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1 Introduction

Text-to-Speech (TTS) is a complex task in speech processing that aims to generate
natural-sounding speech from written text. It is fundamentally a one-to-many sequence
prediction problem, as a single text input can correspond to multiple valid speech outputs
with variations in prosody, emphasis, and speaker characteristics.

In order to facilitate the transfer of speaking style, most models incorporate reference
speech as additional input to the model architecture [1]. This approach allows the system
to capture and reproduce specific voice characteristics and speaking styles. Such use of
reference speech is also used in the context of transformer-based TTS architectures such
as VALL-E [2]. In transformer-based TTS systems, the model creates a continuation of
the reference speech by vocalizing the target text while maintaining style, acoustic envi-
ronment, and speaker characteristics throughout the generated speech. This capability
enables voice cloning, as the system can generate new speech in the voice of the reference
speaker, resulting in natural-sounding output that closely matches the qualities of the
reference audio.

The VALL-E [2] model, proposed by Wang et al., represents a significant advance-
ment in transformer-based text-to-speech (TTS) technology. VALL-E’s architecture is
composed of two decoder-only transformer models, operating on discrete audio codes
produced by the EnCodec model [3]. This design choice allows VALL-E to demonstrate
zero-shot voice cloning capabilities using just 3 seconds of audio prompt. The VALL-E
model utilizes EnCodec codes as an intermediate representation and employs the En-
Codec decoder as its vocoder. These EnCodec codes consists of 8 codebooks such that
speech audio is represented by a (7', 8) matrix, where T' denotes the time dimension. In
VALL-E’s two-stage architecture, the first transformer autoregressively predicts the au-
dio represented as a sequence of codes from the first EnCodec codebook. Subsequently,
the second Non-Autoregressive (NAR) transformer consecutively predicts the remaining
7 sequences. The use of discrete audio codes and the two-stage prediction process con-
tribute to VALL-E’s abbilitiy to perform zero-shot voice cloning with minimal reference
audio, marking significant step forward in the field of TTS technology.

2 Motivation and Challenges

Our study is driven by two key factors. First, the original VALL-E implementation
was not open-sourced, limiting the research community’s ability to verify its capabilities
and build upon its architecture. Second, we observe a trend in recent TTS models
with similar architectures (operating on discrete audio codes) using increasingly larger
datasets. For instance, the original VALL-E used 60,000 hours of LibriLight [4] data,
BaseTTS [5] report using 100,000 hours of public domain speech data not accessible
by research community, and Seed-TTS [6] claim to use datasets orders of magnitude
larger. In contrast, our motivation is to create models that can achieve comparable
performance using datasets that are orders of magnitude smaller and thereby support
low-resource languages, language varieties, or domains. This approach also aims to



develop more environmentally friendly models for research, reducing the computational
resources required while maintaining high-quality speech synthesis capabilities. By doing
so, we seek to make advanced TTS technology more accessible and sustainable for a
broader range of applications and research contexts.

During our effort to create an open-source replication of VALL-e, we encountered sev-
eral significant challenges: First, a major difficulty was accurately assessing the model’s
training status. To address this, we developed a window-based accuracy metric to eval-
uate whether the model was learning to predict the correct codes with potential delays.
This metric is computed in quantiles (25%, 50%, 75%, and 100%) from the beginning
of the sequence. Window-based accuracy metric provided insights that differed from
traditional accuracy measures, making it challenging to evaluate the model’s learning
progress. Second, we faced issues with instability in the Non-Autoregressive (NAR)
transformer during mixed-precision training. We addressed this issue with adjustments
to model size and training parameters. Third, balancing inference sampling parameters
for optimal speech generation proved to be a complex task, requiring careful tuning and
experimentation.

3 Methodology and Findings

We implemented the VALL-E architecture from the initial paper description, and adapted
it for smaller datasets by reducing the NAR model size without significant performance
loss. We developed a flexible pipeline capable of processing diverse data. Key findings
from our experiments are:

1. Data Efficiency: Experiments shows significant improvements in data efficiency
compared to the original VALL-E implementation. Our model was trained on
just 221 hours of clean bilingual audio, yet still produced high-quality synthesized
speech. This finding suggests that the model architecture is more data-efficient
than previously thought, potentially making it suitable for low-resource languages
or domains.

2. Importance of Inference Mask: We discovered that applying the same mask calcu-
lation during inference as in training is essential for producing intelligible speech.
Without the mask, the output becomes unintelligible, highlighting the sensitivity
of the model to implementation details.

3. Sampler Parameter Sensitivity: We discovered that the model is sensitive to tem-
perature and top-k settings during generation. Lower temperature and top-k val-
ues effectively scale the logits, resulting in generated speech with a slower speaking
style and frequent pauses. These parameters significantly influence the generated
speech’s pace and fluency, proves the need for careful tuning to achieve natural
sounding output.

4. Effect of EnCodec Code Dynamics: Our window-based accuracy metric revealed
a consistent pattern of slightly decreasing accuracy across sequence length. Addi-
tionally, while window-based accuracy metric demonstrates a decreasing pattern,
traditional accuracy metrics such as top-1 and top-10 continue to improve. This
explains the model’s evolving ability to balance between predicting repeated codes
and anticipating changes in the audio sequence, despite increased complexity in
longer sequences. This proves assessing model performance based on token pre-
diction accuracy remains a challenging problem.

4 Conclusion

Our study provides valuable insights into the difficulty of implementing advanced TTS
systems. We successfully adapted the architecture for smaller datasets, and gained
deeper understanding of the model’s learning progress through various sampling meth-
ods and the implementation of a window-based accuracy metric. The audio samples
generated by our model can be compared to original VALL-E model output at our
demo page: https://valle-samples.speechtechlabs.com.


https://valle-samples.speechtechlabs.com
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