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Human traits are influenced by genetics [18]. Variation in genetics can be caused
by single nucleotide polymorphisms (SNPs): a substitution of a single allele in
the DNA [20]. Genome-wide association studies (GWAS) can discover variants
of these SNPs that are associated with certain traits by testing the differences in
allele frequency between individuals [20]. Based on GWAS summary statistics,
an individual’s genetic predisposition for a trait or disease can be estimated from
their genotype by calculating a polygenic (risk) score (PGS) [1]. This PGS can
potentially be used clinically to classify high-risk individuals. These individuals
can then be included in additional screening and preventative treatments [13].

However, so far, the predictive power of PGS for complex diseases remains
limited [7]. This is partly because genome-wide association studies (GWAS) often
lack the necessary statistical power and focus only on sequencing common genetic
variants [7][22]. Moreover, PGS are typically calculated as the weighted sum
of effect alleles [1] [13]. This assumes that (1) the effect of SNPs are linearly
additive, and (2) SNPs act independent of one another [7]. These assumptions
are not always met, because (1) the effects of a SNP can be non-additive [8],
and (2) epistasis, or gene-gene interaction, is a ubiquitous component of disease
[16]. Thus, traditional scoring methods cannot generate PGS that make the most
accurate prediction in disease risk by neglecting these effects.

These limitations can be addressed by using machine learning methods, like
neural networks (NN). Machine learning methods can capture non-linear rela-
tionships between SNPs and disease, assume non-additive effects of SNPs and
incorporate interaction effects between genes [7]. Using activation functions, non-
linearity is induced in neural networks, which allows the network to capture more
complex patterns [4]. Furthermore, machine learning methods can easily include
additional features, like demographics, clinical variables and measures from di-
agnostic imaging or lab reports [5]. A previous study has reviewed the appli-
cation of traditional machine learning, (e.g. support vector machines, k-nearest
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neighbours, random forests) as scoring method for PGS [12]. Here, we present
a mini-review of recent literature on the application of (deep) neural networks
(NNs) for polygenic scoring where we address the question if these methods can
benefit the predictive value of the PGS.

From literature search on keywords ’deep learning’, ’neural network’, and
’polygenic score’, we identified 23 potential articles. From this list, 11 articles
were included in this mini-review [2][3][6][11][9][10][15][17][19][23][24]. The re-
maining articles were excluded because they did not employ a neural network,
did not calculate a PGS, or because they were a review. In 6 (55%) of the included
articles, the predictive value of the NN outperformed that of traditional scoring
methods [2][9][17][19][24][23]. 3 articles (27%) reported lower or equal perfor-
mance of the PGS based on NNs for at least one of the phenotypes [3][6][11][10];
note that 1 article did not make a comparison between NN and traditional scor-
ing methods [15]. It should be noted that the differences in performance between
methods are often small and not always statistically validated. However, even a
1% improvement in accuracy can have strong implications for patients, as it can
correspond to thousands of additional detected cases in screening [11].

Studies that improved over the traditional methods employed either a stan-
dard NN [2][24], a convolutional NN (CNN) [23], a recurrent NN [17], a NN with
weight regularisation [9], or a genome local net with locally connected layers
[19]. In some cases, a CNN was outperformed by traditional methods [3] or the
genome local net (GLN) [19] in other studies. In the study where CNN works
well [23], they also use a NN for preselection of the SNPs (as opposed to simply
using the SNPs deemed significant by the GWAS), implying that the selection
process for SNPs also greatly influences the results. This is supported by a the
GLN model study, which is outperformed by a model based just on covariates
in 70% of the 338 studied traits, and they suggest that this might because the
GLN overfits [19]. Therefore, both standard NN and modern variants seem to
work, but the choice of preselection of the SNPs is an important step.

The use of NN or variants thereof may improve over traditional scoring meth-
ods by incorporating non-linearity and interaction terms. These benefits only
apply to traits where a non-additive effect and epistasis is expected. The studies
in this review focused primarily on cancer [2][11][10][9] and Alzheimer’s disease
[6][17][24]. The results regarding the performance of NN over traditional meth-
ods for cancer phenotypes were mixed, but the NN performed better for all
Alzheimer’s studies, for which some interaction effects have been found [14][21].
In one study [19] 338 phenotypes were investigated, and it was found that their
GLN worked particularly well for autoimmune diseases. This supports the idea
that the trait of interest can impact whether an added benefit of the use of NN
is found.

In conclusion, neural networks show marginal improvements for the calcula-
tion of the genetic risk of an individual. Improvement of the predictive power
of neural networks for calculation polygenic scores may depend on the SNP
selection and the trait under investigation.
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