
Upside-Down Reinforcement Learning for More
Interpretable Optimal Control

Juan Cardenas-Cartagena, Massimiliano Falzari, Marco Zullich, and
Matthia Sabatelli

University of Groningen

Abstract. Model-Free Reinforcement Learning (RL) algorithms either
learn how to map states to expected rewards, or search for policies that
can maximize a certain performance function. Model-Based algorithms
instead, aim to learn an approximation of the underlying model of the
RL environment and then use it in combination with planning algo-
rithms. Upside-Down Reinforcement Learning (UDRL) is a novel learn-
ing paradigm that aims to learn how to predict actions from states and
desired commands. This task is formulated as a Supervised Learning (SL)
problem and has successfully been tackled by Neural Networks (NNs).
In this paper, we investigate whether function approximation algorithms
other than NNs can also be used within a UDRL framework. Our ex-
periments, performed over several popular optimal control benchmarks,
show that tree-based methods like Random Forests and Extremely Ran-
domized Trees perform just as well as NNs with the significant benefit of
resulting in policies which are inherently more interpretable than NNs,
therefore paving the way for more transparent, safe, and robust RL.

Keywords: Upside-Down Reinforcement Learning · Neural Networks ·
Random Forests · Interpretability · Explainable AI

1 Upside-Down Reinforcement Learning

The idea of Upside-Down Reinforcement Learning (UDRL) [4] is that of tackling
Reinforcement Learning (RL) problems via Supervised Learning (SL) techniques.
To understand how this can be achieved, we define a Markov Decision Process
as a tuple M = ⟨S,A,P,R⟩ where S corresponds to the state space of the envi-
ronment, A is the action space modeling all the possible actions available to the
agent, P : S×A×S → [0, 1] is the transition function and R : S×A×S → R is
the reward function. When interacting with the environment, at each time-step
t, the RL agent performs action at in state st, and transitions to state st+1 along-
side observing reward signal rt. The goal is then to learn a policy π : S → ∆(A)
which maximizes the expected discounted sum of rewards Eπ[

∑∞
k=0 γ

krt+k], with
γ ∈ [0, 1) and ∆(A) being the set of all probability distributions over A. In RL,
the agent can either learn to predict expected rewards, assuming the model-free
RL set-up, or learn to predict st+1 and rt, assuming a model-based RL set-
ting. However, a UDRL agent doesn’t do either, and its main goal is learning to



2 J.D. Cardenas Cartagena et al.

predict actions instead. Given an RL transition τ = ⟨st, at, rt, st+1⟩, an UDRL
agent uses the information derived from τ to learn to map a certain state st,
alongside commands dr and dt, to action at. These commands correspond to the
desired reward dr the agent wants to achieve within a certain time horizon dt
when being in state st. The ultimate goal of a UDRL agent is, therefore, that
of learning f : (st, dr, dt) → at, a task that can be formalized as an SL prob-
lem. This function f comes under the name Behaviour Function and is typically
modeled by a neural network (NN); however, this is not strictly required. In this
paper, we implement it as tree-based methods, specifically as Random Forests
(RFs) [1] and Extremely Randomized Trees (ETs) [2].

2 Results

x ẋ θ θ̇ d r d h

0
10
20
30

Fig. 1: Feature importance
scores for a state of the
CartPole environment coming
from a RF Behaviour Function.

In Figure 2, we show the training curves
for three different Behaviour Functions f :
NNs, RFs, and ETs on the popular optimal
control benchmarks CartPole, Acrobot, and
Lunar-Lander. Our results show, on average,
on-par performance across tested algorithms.
The tree-based methods, however, allow us
to get global explanations for the Behaviour
Function, which in the case of NNs is not
straightforward. In Figure 1, we show a snap-
shot of the feature importance scores esti-
mated as mean impurity decrease. The scores
are computed at inference time based on the
work presented by Louppe et al. [3]. We com-
pute these for the different features modeling
a specific state st of the CartPole environment once the Behaviour Function has
successfully learned how to solve the task. We can see that the Behavior Func-
tion considers the pole angle of the cart denoted by θ to be the most important
feature, allowing the cart to stay in balance. We hope that these results pave
the way for studies around interpretable and explainable optimal control.

0 200 400
0

50
100
150
200

R
ew

ar
d

0 200 400

−400

−200

0 200 400

−400

−200

0

NN RF ET

Fig. 2: Training curves obtained on the CartPole, Acrobot, and LunarLander
by the three tested Behaviour Functions f .



2. RESULTS 3

References

1. Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.
2. Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees.

Machine learning, 63:3–42, 2006.
3. Gilles Louppe, Louis Wehenkel, Antonio Sutera, and Pierre Geurts. Understanding

variable importances in forests of randomized trees. Advances in neural information
processing systems, 26, 2013.

4. Juergen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards–
just map them to actions. arXiv preprint arXiv:1912.02875, 2019.


	Upside-Down Reinforcement Learning for More Interpretable Optimal Control

