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1 Introduction

Hierarchical structures describing a syntax of
harmony have long been studied and proposed
by music theorists, based on musical relations
like prolongation or preparation [15,9,14,10,11].
Algorithms that model these structures exist but
they either require costly expert annotations for
training [3], or are based on music theorists’ pre-
dispositions about harmonic syntax [7]. Figure 1
shows such an example tree resulting from the
parsing of a chord sequence according to syntax
rules from a context-free grammar. These hier-
archical representations of harmony can aid the
analysis of music, similarly to Schenkerian anal-
ysis where foreground notes are related to the
Ursatz – a deeper structure [13].
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Fig. 1: A syntax tree rep-
resenting the harmony of a
part of ‘Take the “A” train’
by Duke Ellington and Billy
Strayhorn.

We propose to use neural networks to exploit parameter sharing when esti-
mating rule probabilities for probabilistic context-free grammars (PCFG’s),
to induce a grammar for chord sequences from jazz pieces. For the first time,
we do this in an entirely unsupervised manner, i.e., entirely from raw textually
encoded sequences of chord symbols, without access to annotated parse trees
(except for evaluation on sequences not seen during training) and while adding
minimal music theoretical knowledge. This allows us to train on more data:
datasets with tree annotations contain little more than 100 samples [5,6], while
datasets with raw chord sequences exist with up to 20K samples [2].

2 Methods

A PCFG consists of rules in Chomsky normal form, like S → A, A → B1 B2,
and P → c. S is the start symbol, A, B1, and B2 are nonterminal symbols
(representing groups of chords), P is a preterminal symbol (representing a single
chord), and c is a chord symbol. Each rule r is associated with a probability
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Fig. 2: Beginning of Sunny by Bobby Hebb: (a) predicted and (b) annotated tree.
N-PCFG correctly identifies Bø7 - E7 - Am7 as a ii - V - I progression.

πr. Starting with the root symbol, the rules can be recursively applied to arrive
at a binary tree with only chord symbols as leaves. The probability of a parse
tree t is given by the product of the probabilities of the rules that t consists
of: p(t) =

∏
r∈t πr. Assuming that all sequences are generated by a PCFG, and

that any sequence s might have several (exponentially in the sequence length
L) parse trees of which the leaves form s, we get a probability distribution over
sequences: p(s) =

∑
t∈T (s) p(t), where T (s) is the set of parse trees of s. We use

the neural parameterization of [8], in which rule probabilities πr are computed
by MLP’s from embeddings representing each root, non- or preterminal symbol
and each chord symbol. During training, we simply maximize the likelihood of
sequences under p(s). The sum over exponentially many latent trees is computed
with the inside algorithm [1]. At inference, we find the optimal tree using Viterbi
or Minimum Bayes Risk decoding [12,4].

3 Results

Neural PCFG’s (N-PCFG) learns viable
structures that overlap with annotations
(compare to Random in table 1). Train-
ing on more data (... + ChoCo [2]) and
with an extra loss that incentivizes chord
groups based on the musical 5th relation (...
+ Prog. loss) both help. There remains a
considerable gap with supervised prediction
(MuDeP [3]) and annotations. N-PCFG of-
fers alternative viable explanations: F∆ as
degree VI of the Am key in fig. 2a versus as
tritone substitution for E7’s relative domi-
nant B7 in fig. 2b according to annotation.

Model Train data F1

N-PCFG JHT .387
N-PCFG ... + ChoCo .455
... + Prog. loss .477
MuDeP JHT .623
Random .178

Table 1: Test F1 of unsupervised
N-PCFG, supervised MuDeP and
random predictions on JHT cor-
pus [6].

Conclusion. Unsupervised induction and parsing of harmonic syntax trees from
chord sequences is viable but hard.
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