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When mathematicians develop theories, it is important to have examples of
the structures that are studied. These can be used to generate conjectures about
the structures at hand, or as counterexamples to previously generated conjec-
tures. In case the objects at hand are finite, combinatorial search techniques can
be used to generate some of them, or even to enumerate all of them.

In this thesis, we construct a database containing a subset of finite solutions
to the Yang-Baxter equation (YBE). This equation was introduced in the con-
text of statistical and quantum mechanics [15, 4], however, applications in knot
theory, quantum group theory, cryptography etc. [11, 12] are known as well. Even
though the YBE is an active research area, enumerating all solutions is still an
open problem. One well-researched subset of solutions is the set of combinatorial
solutions [9]. However, without any additional assumptions, even the task of find-
ing these combinatorial solutions becomes highly unpredictable. Therefore, the
focus often lies on enumerating solutions that meet specific extra assumptions.
Given the combinatorial nature of the problem, one can gain a richer under-
standing of the equation’s behavior and its connections to various mathematical
structures by incorporating group actions. Non-degenerate solutions for exam-
ple, have deep connections with various topics in pure mathematics, especially
group and ring theory. Hence, we limit our focus to the enumeration of finite,
non-degenerate, involutive combinatorial solutions. We refer to [14] for a friendly
introduction.

In this thesis, we have chosen to express the problem as a Boolean satisfia-
bility (SAT) problem. Handling isomorphisms has a long history in SAT, with
various tools being used to exploit so-called symmetries of the given proposi-
tional formula either before search (eg. [2, 8, 3]) or during the search (eg. [13, 5,
7, 10]). The SAT modulo symmetries (SMS) framework [10] stands out in this
list by focusing on the enumeration of satisfying, non-isomorphic assignments.
It was designed with use cases in mathematics in mind and in particular it was
first used to enumerate graphs with certain interesting properties. The core idea
underlying SMS is that we can (1) encode as a propositional formula what it
means to be a suitable mathematical structure and (2) force a SAT solver, during
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search, to generate canonical representations of each of the classes of isomorphic
solutions. The second point is achieved by designing a procedure that is aware
of the isomorphisms of the problem at hand, known as the minimality check,
which takes the state of the SAT solver (a partial interpretation) and checks
whether the current assignment can still be extended to a complete assignment
that represents a solution that is lexicographically minimal (among all solutions
isomorphic to it). If not, it forces the solver to abort the current branch of the
search tree by analyzing why this is no longer possible and learning a new clause
that is then added to the solver’s working formula. In general this minimality
check is incomplete, but guaranteed to be complete when ran on complete assign-
ments. This minimality check needs to be designed for each application, taking
into account the (encoding of) the mathematical problem at hand as well as the
structure of the set of isomorphisms.

We have implemented a minimality check that allows us to reason about
partially constructed cycle sets, a mathematical structure equivalent to a specific
subset of YBE solutions. We have experimentally verified this new enumeration
tool against an existing approach introduced in [1]. Here, they represent the
problem at hand as a higher-level constraint program and take the isomorphisms
into account by adding extra constraints before the search starts, combined
with a final isomorphism check. Using this technique, the authors were able to
enumerate finite, non-degenerate, involutive combinatorial solutions over sets up
to size 10. Our methods outperform the state-of-the-art by an order of magnitude
and we have good hopes for pushing them further in order to enumerate all
solutions of size 11.

In the future, the methods we used can be extended to the construction of
other combinatorial structures similar to those considered here. This includes
racks and quandles, which are used in topology to construct invariants of knots;
arbitrary solutions (e.g. non-involutive or with relaxed degeneracy conditions);
and objects that appear in algebraic logic, especially L-algebras.

One important question that might remain is why one should trust our im-
plementation, except from the fact that up to size 10 our results coincide with
what is known so far. In combinatorial optimization, proof logging, which is the
idea that solvers should not just output a solution (or a set of solutions), but also
a machine-checkable proof that this answer is indeed correct, is gaining popular-
ity. The SAT solver underlying SMS supports some form of proof logging, only
guaranteeing us that the SAT solver did not make any mistakes, and not pro-
viding any guarantees whatsoever on the encoding or on the correctness of the
custom propagator. The most promising approach to achieve proof logging for
SMS appears to be VeriPB, which was recently used to certify static symmetry
breaking [6]. However, there are many challenges on the road ahead, providing
true trustworthy proof logging for isomorphism-free generation appears to be a
major challenge.

Acknowledgments. This work was partially supported by Fonds Wetenschappelijk
Onderzoek – Vlaanderen (projects G070521N and G004124N) and by the project
OZR3762 of Vrije Universiteit Brussel.



SAT-Based Enumeration Of Solutions To The Yang-Baxter Equation 3

References

1. Akgün, Ö., Mereb, M., Vendramin, L.: Enumeration of set-theoretic solu-
tions to the yang–baxter equation. Mathematics of Computation (jan 2022).
https://doi.org/10.1090/mcom/3696, https://doi.org/10.1090/mcom/3696

2. Aloul, F.A., Sakallah, K.A., Markov, I.L.: Efficient symmetry breaking for Boolean
satisfiability. IEEE Trans. Computers 55(5), 549–558 (2006)

3. Anders, M., Schweitzer, P., Stieß, J.: Engineering a preprocessor for symmetry
detection. In: SEA. LIPIcs, vol. 265, pp. 1:1–1:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2023)

4. Baxter, R.J.: Partition function of the eight-vertex lat-
tice model. Annals of Physics 70(1), 193–228 (1972).
https://doi.org/https://doi.org/10.1016/0003-4916(72)90335-1,
https://www.sciencedirect.com/science/article/pii/0003491672903351

5. Benhamou, B., Nabhani, T., Ostrowski, R., Saïdi, M.R.: Enhancing clause learning
by symmetry in SAT solvers. In: ICTAI (1). pp. 329–335. IEEE Computer Society
(2010)

6. Bogaerts, B., Gocht, S., McCreesh, C., Nordström, J.: Certified dominance and
symmetry breaking for combinatorial optimisation. J. Artif. Intell. Res. 77, 1539–
1589 (2023)

7. Devriendt, J., Bogaerts, B., Bruynooghe, M.: Symmetric explanation learning: Ef-
fective dynamic symmetry handling for SAT. In: SAT. LNCS, vol. 10491, pp. 83–
100. Springer (2017)

8. Devriendt, J., Bogaerts, B., Bruynooghe, M., Denecker, M.: Improved static sym-
metry breaking for SAT. In: SAT. LNCS, vol. 9710, pp. 104–122. Springer (2016)

9. Drinfeld, V.G.: On some unsolved problems in quantum group theory, p.
1–8. Springer Berlin Heidelberg (1992). https://doi.org/10.1007/bfb0101175,
http://dx.doi.org/10.1007/BFb0101175

10. Kirchweger, M., Szeider, S.: SAT modulo symmetries for graph generation. In:
Michel, L.D. (ed.) 27th International Conference on Principles and Practice of
Constraint Programming, CP 2021, Montpellier, France (Virtual Conference), Oc-
tober 25-29, 2021. LIPIcs, vol. 210, pp. 34:1–34:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021). https://doi.org/10.4230/LIPICS.CP.2021.34,
https://doi.org/10.4230/LIPIcs.CP.2021.34

11. Nichita, F.F.: Yang–baxter equations, computational methods and applica-
tions. Axioms 4(4), 423–435 (2015). https://doi.org/10.3390/axioms4040423,
https://www.mdpi.com/2075-1680/4/4/423

12. Perk, J.H., Au-Yang, H.: Yang–baxter equations. In: Françoise,
J.P., Naber, G.L., Tsun, T.S. (eds.) Encyclopedia of Mathe-
matical Physics, pp. 465–473. Academic Press, Oxford (2006).
https://doi.org/https://doi.org/10.1016/B0-12-512666-2/00191-7,
https://www.sciencedirect.com/science/article/pii/B0125126662001917

13. Sabharwal, A.: Symchaff: exploiting symmetry in a structure-aware satisfiability
solver. Constraints An Int. J. 14(4), 478–505 (2009)

14. Vendramin, L.: What is. . . a skew brace? Notices Amer. Math. Soc. 71(1), 65–67
(2024)

15. Yang, C.N.: Some exact results for the many-body problem in one di-
mension with repulsive delta-function interaction. Phys. Rev. Lett. 19,
1312–1315 (Dec 1967). https://doi.org/10.1103/PhysRevLett.19.1312,
https://link.aps.org/doi/10.1103/PhysRevLett.19.1312


