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1 Introduction

Quantum Tiq-Taq-Toe [5] is a well-known benchmark and playground for both
quantum computing and machine learning. Despite its popularity, no reinforce-
ment learning (RL) methods have been applied to Quantum Tiq-Taq-Toe. Al-
though there has been some research on Quantum Chess [15,3], this game is
significantly more complex in terms of computation and analysis. Therefore, we
study the combination of quantum computing and reinforcement learning in
Quantum Tiq-Taq-Toe (code for our work can be found [1]), which may serve as
an accessible testbed for the integration of both fields.

2 Methodology

Quantum games are challenging to represent classically due to their inherent par-
tial observability and the potential for exponential state complexity. In Quantum
Tiq-Taq-Toe, states are observed through Measurement (a 3x3 matrix of state
probabilities) and Move History (a 9x9 matrix of entanglement relations), mak-
ing strategy complex as each move can collapse the quantum state.

Our study examines two versions of Quantum Tiq-Taq-Toe from the quan-
tumlib repository [6]. The first version restricts entanglement moves to include
at least one empty cell, blending traditional rules with quantum mechanics. The
second version lifts these restrictions, allowing more diverse quantum states and
interactions, thereby increasing strategic depth.

3 Results

We conducted a comparative analysis of self-play PPO [12,13,10] agents in Quan-
tum Tiq-Taq-Toe, exploring their performance with access to both measurement
matrices and historical entanglement records (TT agent), as well as with access
to only the measurement matrix (TF) or historical entanglement record (FT).

For the first set of rules, which imposes constraints on entanglement moves,
we observe a tendency for the first player to gain an advantage (Fig. 1). This
advantage is noticeable despite inherent randomness in the game, which pre-
vents guaranteed wins, and therefore suggests the presence of discernible winning
strategies.
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Fig. 1: RL results on Quantum Tiq-Tac-Toe Version 1

(a) Average reward on 100 games during
the training of different agents

(b) Pitting best agents: Red −→ X-Wins,
Blue −→ O-Wins, Green −→ Draws

Fig. 2: RL results on Quantum Tiq-Tac-Toe Version 3

(a) Average reward on 100 games during
the training of different agents

(b) Pitting best agents: Red −→ X-Wins,
Blue −→ O-Wins, Green −→ Draws

For the third set of rules, which allows for triple entanglement, the combined
state of measurement matrix and historical entanglement yields optimal perfor-
mance based on the pitting results (Fig. 2). This integrated approach enables
agents to utilize real-time state probabilities and insights from past game inter-
actions, leading to more equitable outcomes between players. It also underscores
the importance of comprehensive information in strongly partially observable
quantum environments.

4 Discussion

Most quantum problems require both precise control and mitigation of partial
observability, making machine learning particularly suitable. Indeed, RL has
already shown promise in fields like quantum error correction [2,11]. We identify
Quantum Tiq-Taq-Toe, with its various subtypes, as an accessible testbed for
the development of RL methods in the quantum setting. Future work could
investigate other methods to mitigate partial observability, such as the use of
state windowing [9], recurrent neural networks [8], recurrent state space models
[7], or transformers [14].
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Appendix

A. Environment

Quantum Tiq-Taq-Toe [4] is an altered variant of the classic Tic-Tac-Toe game.
In the traditional game, each cell on a 3x3 board can be empty, X, or O. In
the quantum version, each cell is a qutrit, existing in a superposition of three
quantum states: empty (| ⟩), X (|X⟩), or O (|O⟩). Given the full board state
(|η⟩), the probability of collapsing to a specific state |c1c2...c8c9⟩ (ci ∈ { , X,O})
is:

|η⟩ =
∑

ϕ∈{ ,X,O}9

αϕ |ϕ⟩ ,
∑

ϕ∈{ ,X,O}9

α2
ϕ = 1

P(η = c1c2...c8c9) = || ⟨c1c2...c8c9|η⟩ ||2 = α2
c1c2...c8c9

where |η⟩ is the quantum state of the system, that can be express as a linear
combination of all possible classical states (|ϕ⟩) with α2

ϕ being the probability
to observe the state |ϕ⟩.

Action Space In classical Tic-Tac-Toe, a move changes an empty cell to X or
O (left of Figure 3). In the quantum version, these moves are XNOT | ⟩ −→ |X⟩
and ONOT | ⟩ −→ |O⟩.

Additionally, quantum moves involve entangled pairs of cells. These moves
create two possible states: one with X/O in the first cell and another with X/O in
the second cell, leading to complex quantum states. The simplest case entangles
two empty cells with X/O, resulting in a 50% probability of X/O appearing in
either cell (right of Fig. 3).

Fig. 3: Most simple classical/quantum moves allowed during the game

State Collapsing A pivotal phenomenon in the quantum game is State Collaps-
ing, as illustrated in Fig.4. This occurrence occurs when the game board becomes
saturated with moves, utilizing both quantum and classical moves that impact
all cells on the board. Upon the state collapsing, a specific state is selected from
the multitude of possible states. This selection is determined by the probability
distribution outlined by the existing quantum state (|η⟩ =

∑
ϕ∈{ ,X,O}9 αϕ |ϕ⟩).
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Fig. 4: State collapsing after filling all the cells with anything (quantum/classical
moves)

In addition, we distinguish two sets of game rules (Fig.5) that affect the game
play:

– Version 1 (V1) - reduce the list of available entanglements moves only to
pairs of cells that contain at least one free cell (we consider a free cell as a
cell that was not used for any previous moves).

– Version 3 (V3) - any combination of two cells is a valid entanglement move.

Fig. 5: Available moves considering the two sets of game rules

B. Observation Space

A paramount challenge in this game revolves around effectively representing
quantum information in a classical format to facilitate an Agent’s learning pro-
cess. The most straightforward method involves classically storing the quantum
state and simulating the game. However, this approach is deemed unreliable due
to the impracticality of saving a 9-qutrit quantum state, which requires complex
numbers. This not only contradicts the essence of a quantum game but also
poses a significant computational burden.
To address this challenge, two classical pieces of information are explored in this
report: Measurements and Moves History. These representations offer a more
manageable way to capture and convey quantum aspects within the framework
of the game, enabling effective learning for an Agent.

Measurements A piece of essential information that can help an Agent learn
to play the game would be the probability of each cell being in either /X/O
state. However, to compute the real values of those would imply the access to
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the quantum state. To overcome this, we can estimate those probabilities. Given
the quantum state of the game board |η⟩, we can simulate the state collapsing
a number of times (N) and estimate the probabilities ̂P(ci = ), ̂P(ci = X)and
̂P(ci = O) as the number of appearances of /X/O on each cell divided by N.

The relation between the estimates and real values is: ̂P(ci = ) = P(ci = ) +

N (0, 1
N ), ̂P(ci = X) = P(ci = X) + N (0, 1

N ) and ̂P(ci = O) = P(ci = O) +
N (0, 1

N )
So, these estimations provide a practical means for an Agent to learn and

make decisions based on approximated probabilities, offering a computationally
feasible approach in the absence of direct access to the precise quantum state.

Moves History An additional informative resource for an agent’s learning
process involves maintaining a history of past moves. This data is structured
using two matrices, one for X and one for O, each with dimensions of 9 × 9
(MHX and MHO). The matrices are defined as follows:

– MH
X/O
i,j : Represents the number of moves entangling ci and cj using X/O,

where i, j ∈ {1, ..., 9} and i ̸= j.
– MH

X/O
i,i : Indicates the number of classical moves using X/O on ci, where

i ∈ {1, ..., 9}.

This fixed-dimension representation efficiently captures the historical moves in
a structured manner, providing valuable information for the agent’s learning
process.
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