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1 Introduction

Adaptive optics (AO) is a technique used to correct for disturbances in optical
systems, by adjusting a set of deformable mirrors (DM). Controlling a tele-
scope’s DM is a high-dimensional decision problem that follows a constant loop
of adjusting mirrors and checking the adjustment’s effect on the acquired image.
Due to the sequential nature of this process and a clearly defined goal measure
(reducing the noise), prior work increasingly focused on applying reinforcement
learning (RL) to AO control [1,2,3,4,5,6].

In this work, we demonstrate that RL can also be used for sensor-free AO
control in the context of astronomical imaging. We argue that this approach is
advantageous, as it reduces the overall system complexity by removing the sensor
component and with it any potential noise or bias such a sensor can introduce.

2 Methodology

The number of mirrors in an AO can be high, thus creating a high-dimensional
space. Atmospheric distortions can be described using a set of Zernike polyno-
mials [7]. We can therefore use the same polynomials to shape the set of DM
and correct aberrations. This way we are able to naturally capture the action
space dimensionality (to the number of used polynomials).

We use Soft Actor-Critic (SAC), an off-policy RL algorithm suited for con-
tinuous action spaces. For our application, states are images, actions are adjust-
ments of the DMs, and the reward captures image sharpness or centering. Our
implementation and the full paper can be accessed via GitHub∗.

The environment we use has the focal image of the telescope (48x48 pixels) as
the observation space, and the reward function is a measure of image sharpness.
The action space is continuous with the dimensionality depending on the number
of Zernike modes used. To simplify the problem, atmosphere distortions are
filtered so that they can always be described using the same number of Zernike
modes that define the action dimensionality. This makes the environment harder
to solve as we increase the number of Zernike modes used. Higher degrees of the
polynomials produce smaller distortions, which means that after a certain point,

∗https://github.com/johnkou97/AdaptiveOptics



2 Juri Morisse, Ioannis Koutalios, Rico Landman⋆, Thomas Moerland⋆

Fig. 1. Performance of the agent in the environment using 27 Zernike modes. The “no-
agent” baseline is the performance of the environment without any agent controlling
the deformable mirror and is represented by the orange line. Left panel: Learning Curve
during training. Right panel: Evaluation Performance of the agent. The x-axis is the
average reward over each episode and the y-axis is the frequency of each reward.

further increasing the number of modes will not make any significant difference
to the environment and the filtering will no longer play a crucial role.

3 Results

We tested our agent in different environment versions, using a different number
of Zernike modes. Each time we increase the number of modes, the environment
gets harder to solve. In fig. 1 we show the learning curve and evaluation for
our agent in the “hardest” version of the environment we were able to train at
successfully. For the 27 Zernike modes environment, we see that our agent is able
to learn and reaches a plateau around 0.6 in the learning curve. The evaluation
shows that higher performance can be achieved, there are however episodes with
worse performance. The agent was also tested in the environment with a smaller
number of modes and was always successful in learning a policy with an average
return above 0.6. Above 27 Zernike modes, we were unable to see any, probably
due to limitations in computational resources (e.g., buffer size and training time).

4 Discussion & Conclusion

This work serves as a proof-of-concept for the suitability of RL for controlling
sensorless AO systems. Using an environment with controlled action dimension-
ality and noise, we iteratively increased complexity and achieved success for up
to 27 Zernike modes. While this does not match the full complexity of real-world
AO systems, it proves that RL can, in principle, effectively control sensorless AO.

We see our work as a promising first step towards RL-based AO control.
Future work could build on this and, for example, explore a curriculum learning
approach where an agent starts learning a simple task and gradually evolves
towards solving the full task. Additionally, we see value in comparing our method
to that of a sensor-based approach or testing how it performs on a real-world
telescope.
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