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Introduction: Patients with traumatic brain injury (TBI) often experience
pathological increases in intracranial pressure (ICP), leading to intracranial hy-
pertension (tIH) —a common and serious complication [1]. Early warning of
an impending rise in ICP could potentially improve patient outcomes by en-
abling preemptive clinical intervention [2, 3]. However, the limited availability
of patient data poses a challenge in developing reliable prediction models [4–6].
In this study, we aim to determine whether foundation models, which leverage
transfer learning [7], may offer a promising solution.

Data: The training and internal validation data were from the high-resolution
multimodal dataset from TRACK-TBI. After removing unrealistic signals, we
ended up with 32 patients and a total of 83 recordings, comprising 5,142 hours
of data. The data was pre-processed with the algorithm from [4] to end up with
one ICP value for every minute. ICP is measured in mm Hg; normal values for
a person in a supine position range between 0.9 and 16.3 mm Hg [8]. The Brain
Trauma Foundation guidelines set the threshold for a tIH event at 22 mm Hg,
though this is contested [1, 9].

Models: In this study, we compare three models: simple exponetial smooth-
ing (ES) [10], a Recurrent Neural Network (LSTM) [11, 12], and the MOMENT
model [13]. The main characteristics of the models can be seen in Table 1. For
all models, the only input variable was ICP where the past 60-minutes were used
as input to forecast the next 30-minutes.

Table 1. The characteristics of the models used.

Model Transfer
learning

Extensive
training

Input-length Output-length Univariate

MOMENT Yes Yes (Fine-tuning) 512 Variable Partly a

LSTM No Yes Variable Variable No
ES No No Variable Variable Yes

a It can independently model univariate time series.
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Results: We see that the MOMENT model performs, based on the MSE
and MAE, a little better than the LSTM, and both perform much better than
the ES model (Table 2). The lowest MAE was 1.78 (MOMENT). The SD of the
metrics is high for all models, which indicates heterogeneity in the data. The
MOMENT model did converge in fewer epochs compared to the LSTM.

Table 2. Average internal validation performance over 5 CV folds, SD is in brackets.

Metric MOMENT LSTM ES
MSE 9.06 (3.70) 10.19 (3.50) 22.56 (8.31)
MAE 1.78 (0.40) 1.86 (0.32) 3.04 (0.61)

90th percentile MAE 3.85 (0.78) 3.91 (0.72) 6.43 (1.31)
99th percentile MAE 9.45 (1.98) 11.13 (3.53) 14.48 (1.57)

In Figures 1 and 2 we zoom in on the predictions of the MOMENT and
LSTM models. The black line indicates the observed signal and the colored lines
indicate separate 30 minute predictions (every 10 minutes). It is evident that
both models lack the ability to predict high-magnitude, low-frequency changes
in the observed signal.

Fig. 1. 30-minute forecasts (MOMENT). Fig. 2. 30-minute forecasts (LSTM).

Discussion: The MOMENT model was not very convenient to use. It only
allowed one input feature with a fixed input window (512). This means that in
many cases, zero padding needs to be used. The training (fine-tuning) of the
MOMENT model is also slow compared to the LSTM.

We conclude this work by noting that based on our research, ICP forecasting
based solely on the signal does not achieve sufficient performance for practical
implementation. The concept of incorporating prior information into a model has
a strong theoretical advantage, which was only partially realized in this study.
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