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Abstract

Predicting large hydrophobic patches on the protein surfaces is a complex learn-
ing task [1]. Proteins typically hide hydrophobic residues within their core to
avoid interaction with water, a phenomenon known as the hydrophobic effect
[2, 3]. When such sticky residues appear on the surface, they can play key roles
in functional protein-protein, -ligand, or -membrane interactions [4–6], as well
as induce amyloid fibril formation in the context of aggregation diseases [7–9].
Keeping these residues internal is thought to be a key strategy to avert protein
aggregation [10–12]. Hydrophobic areas on the surface of the protein can influ-
ence experimental processes, such as gel formation, protein crystallisation [13],
and separation techniques [14]. Previously we developed a method to define the
largest hydrophobic patch (LHP) - the largest connected hydrophobic area on
the protein surface [1]. Additionally, we demonstrated the significance of ex-
posed hydrophobic surfaces in terms of human disease [1]. LHPs can be used
to identify aggregation-prone regions [15] which pose significant hurdles for the
development of therapeutic proteins, such as monoclonal antibodies [15,16]. Im-
portantly, predicting the exposure of hydrophobic residues on the protein surface
is not a trivial problem. Traditional methods predict the majority of hydropho-
bic residues to be fully buried [1, 17]. The continued evolution of the tools and
methodologies is needed to deepen our understanding of protein hydrophobicity,
especially in the context of neurodegenerative diseases.

This study builds upon protein foundation models and draws inspiration from
recent advancements in deep learning architectures [18]. Current methodologies
in protein property predictions focus on either global or local predictions. Here,
we aimed to bridge this gap in current technology. The novelty of this framework
lies in several key aspects. First, we introduce a multi-task learning approach that
simultaneously predicts both global and local (L)HP values, a feature that has
not been previously explored at the residue level. This dual-focus methodology
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enables the model to learn commonalities and differences across tasks to improve
generalisation, allowing us to explore other (un)related global tasks with limited
data availability. Hence, we extended our train and test datasets with normalised
expression annotations. This addition was inspired by our previous study, where
we showed that highly hydrophobic proteins are generally expressed at lower
levels in the human proteome [1]. Second, our parameter-efficient fine-tuning
methodology enabled us to effectively train large transformer models, overcoming
one of the major bottlenecks of large language models. Our framework allowed us
to (i) outperform the state-of-the-art methods in primary tasks; (ii) improve the
global LHP predictions; (iii) obtain the first model that can predict (L)HPs on
a residue level. Moreover, PatchProt demonstrated the possibility of foundation
models and multi-task strategies to improve the accuracy of protein property
predictions even with sparse datasets.

Fig. 1. Model architecture. The model takes protein sequence as input and predicts
both global and local protein properties. The model consists of an embedding out-
put from ESM-2 protein language model [19] and the downstream architecture similar
to NetSurfP-3 [18]. Additionally, a parameter-efficient fine-tuning strategy was imple-
mented [20,21]. The decoding head consists of a residual block with two convolutional
neural network (CNN) layers and a two-layer bidirectional long short-term memory
(BiLSTM) network. The output is fed into a fully connected layer to provide predic-
tions for all residues- and protein-level tasks.
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