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Reinforcement learning (RL) is successfully applied in various domains [6,
7, 12, 13, 8], yet it struggles to provide safety and behavioural guarantees [3,
14]. Neurosymbolic AI (NeSy), with its ability to combine logical reasoning
and neural perception, has been explored as a potential solution [14, 15, 9].
However, existing NeSy methods, such as probabilistic logic shields [14], focus
on single-step guarantees, limiting their effectiveness where multistep reasoning
is required. To extend NeSy to efficient sequential reasoning, we introduced
relational neurosymbolic Markov models (NeSy-MMs) that have been shown
promising results on generative tasks [2].

We propose a new framework for neurosymbolic reinforcement learning that
incorporates relational NeSy-MMs as internal models for an RL agent. NeSy-
MMs allow the agent to reason over multiple time steps and provide safety
guarantees throughout the training process. We expect that this integration will
provide policies that are resilient to test-time perturbations and adhere to given
constraints over time, e.g. safety constraints.

Relational Neurosymbolic Markov Models

Relational NeSy-MMs are sequential prob-
abilistic models over neurally-parametrised
discrete-continuous random variables (Fig-
ure 1). They are probabilistic reasoning mod-
els that use random variables to model sym-
bols, relations, and logical constraints. Neu-
ral predicates φ and φg map raw inputs
(e.g. images) to symbols and vice versa, for
discriminative and generative tasks. For in-
stance, consider a MiniHack [11] game (Fig-
ure 2), where the monsters can attack the
player. With NeSy-MM we can model the
sequences of interactions as well as a safety
constraint for the player not being attacked.
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Fig. 1: NeSy-MMs sequentially
factorise neural (Nt) and symbolic
states (St) over time. They can be
conditioned on evidence (Zt).

Because of the sequential structure of NeSy-MMs, part of the world model can
be specified by replacing unknown transition functions by neural networks. Finally,
NeSy-MMs are relational models, a popular and very expressive representation
for representing states in, for instance, databases and planning [10]. Moreover,
relational representations facilitate strong generalisation behaviour [4].
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Fig. 2: NeSy-MMs used as neurosymbolic policies that provide safety guarantees.
As in a classic RL algorithms, (→) executes an action in the environment, and
(←) provides a new observation to the policy. The agent (bottom left) has to
reach the staircases (top right). Each NeSy state Hi can contain raw data, or
relational symbols. The transition from Hi to Hi+1 can be fully logical, neural,
or a mixture of both. Each state is also conditioned on a safety property, such
that the agent is not killed by the monsters.

Neurosymbolic Reinforcement Learning by Example

The goal of using NeSy-MMs as RL policies is to obtain formal guarantees within
a given time horizon. Previous efforts [14] have focused on providing single-step
guarantees by shielding [5] a neural policy with a probabilistic logic program [1].
While effective, this approach does not scale to multistep guarantees because
of the #P-hardness of its inference procedure. NeSy-MMs resolve this problem
by using unbiased approximate inference techniques instead. Consider again a
MiniHack level where the agent is in a room with two monsters and has to reach
a goal (Figure 2). The optimal strategy in this case is to take the key and wait
to lure the two monsters away from the goal. Only once the monsters are close
enough and the agent has the key, it can move through the corridor, open the
door, and move safely to the goal before the monsters can catch up. Hence, safely
reaching the goal is not something that can be decided by single-step reasoning.
Concretely, if the agent is governed by a policy π and a sensor φsens gives an
estimate of the current state of the game, then these will form the input to a NeSy-
MM. The NeSy-MM then updates the policy to π+(a| ) = π(a | safet:T , ) that
incorporates the safety constraints via approximate Bayesian inference. Finally,
we want to obtain a policy such that,

Pπ+(safet:T | ) ≥ Pπ+(safet | ) ≥ Pπ(safet:T | )︸ ︷︷ ︸
from [14]

.

This means our NeSy policy is going to be safer than the single time-step
shielded policy from [14], that is in turn safer than the unshielded policy, for
any time horizon. In the future, we aim to empirically verify this idea and more
closely integrate NeSy-MMs into the RL framework by analysing the behaviour
of the expected reward in the presence of neurosymbolic policies.
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