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Introduction
Cancer is a complex and multifaceted disease. Machine learning approaches are often employed
to uncover intricate relationships within datasets from hundreds or thousands of cancer patients. A
key focus for these projects is often not only model performance, but also explainability.
Understanding model decisions is crucial to improve our understanding of the biological processes
which enable tumor development. An additional challenge is that suitable datasets are often small,
limiting the potential of deep-learning approaches. In this work, we aimed to learn the relations
between gene defects and structural changes in the genome, based on a set of observed DNA
mutations. We explored both simple machine learning models and deep learning-based strategies,
comparing performance as well as explainability.

Biological background
Colorectal cancer (CRC) is the third most commonly diagnosed cancer world-wide and second
leading cause of cancer-related deaths (Hossain et al., 2022). There is an urgent need to better
understand the underlying biological mechanisms to improve patient treatment. One of the key
features in (colorectal) cancer is defects in DNA repair, leading to an excessive accumulation of
mutations in the tumor genome (Hanahan and Weinberg, 2000). A well-known gene that plays a
crucial role in many cancers is TP53. Recently, two other genes have emerged that are potential
key players in CRC development and are likely involved in DNA repair: MACROD2 and PRKN.
Defects in these genes are often observed in CRC and associated with an increase in DNA
mutations, more specifically structural variants (SVs). We hypothesized that the role of MACROD2,
PRKN, and TP53 in CRC could be elucidated by identifying and analyzing characteristic patterns of
SVs - mutational signatures - that are associated with defects in these three genes. To enable
capture of non-linear relationships in the data, we chose to adopt a machine learning approach
instead of existing methods for mutational signature analysis such as non-negative matrix
factorization.

Methods
Data: We used a dataset of SVs from 745 CRC metastatic tumors, obtained from the Hartwig
Medical Foundation (Priestley et al., 2019). Patients were labeled according to the gene defects
observed in the tumor (in MACROD2, PRKN, and TP53). We explored 2 labeling strategies: in the
Soft labeling approach, each gene was considered separately and tumors were labeled either
wild-type or mutant. In contrast, in the Strict labeling approach, tumors were labeled based on the
combination of observed gene defects. In addition, we computed both global features, reflecting
characteristics of the tumor itself, as well as event-based features, characterizing properties of
individual SVs.
Models: We performed binary classification for each pair of unique labels (e.g. MACROD2 ∩
PRKN vs MACROD2-only), resulting in 28 tasks using the Strict labeling strategy and 3 tasks using



the Soft labeling approach. We explored two models for these classification tasks: a SV set +
transformer-based approach and a Dirichlet Process Gaussian Mixture Model (DPGMM) + logistic
regression strategy. The input for the transformer-based model consisted of the global features and
individual structural variants observed in a tumor encoded as a set. In contrast, the logistic
regression model was trained only on the global features, in addition to a set of features derived
from the event-based features using a DPGMM approach, in which the information from individual
SVs was aggregated across the tumor. Due to limited dataset size, the Strict labeling strategy was
only employed for the DPGMM + logistic regression approach, whereas Soft labeling was also
explored for the SV set + transformer-based model.

Results
Based on the results of the Soft and Strict labeling strategies, we found a strong co-occurrence
between defects in the three genes: tumors with deficient MACROD2 often also showed defects in
PRKN and TP53 (277/745; 37% of tumors). In contrast, our dataset contained only 38 patients with
defects in MACROD2 only. This highlights the importance of models that can be trained with small
datasets.
Using the Strict labeling strategy, the DPGMM + logistic regression approach showed good
performance for several classification tasks, in particular MACROD2-only vs wildtype and
TP53-only vs wildtype (0.77 and 0.87 AUC; balanced training set of 60 and 92 samples,
respectively). In addition, the MACROD2 ∩ TP53 ∩ PRKN tumors could be distinguished from
MACROD2-only with good performance (0.83 AUC; balanced training set of 60 samples).
The performance of the DPGMM + logistic regression and transformer-based models was
compared using the Soft labeling approach. Although DPGMM + logistic regression showed
superior performance in 2/3 classification tasks, the transformer-based approach improved when
more data was available, suggesting this as the main limiting factor.
Finally, analysis of the logistic regression model coefficients at different regularization strengths
showed that MACROD2-only, PRKN-only, and TP53-only tumors were mainly distinguished from
wild-type by their high number of SVs. In addition, the presence of deletions with size 1-10,000kb
were important to distinguish MACROD2-only and PRKN-only tumors from wild-type.

Conclusion
From this work, we conclude that defects in genes responsible for DNA repair are associated with
a characteristic SV signature that can be detected via machine learning approaches. Although the
DPGMM + logistic regression approach still outperformed transformer-based strategies, this was
likely due to the small dataset and shows potential if more training data was available.
Finally, the desire for explainability to understand underlying biological mechanisms creates a
strong incentive to favor simple, transparent models over more complex architectures, such as
those based on deep learning. In future work, we aim to expand our dataset by incorporating
unlabeled data from additional sources, as well as validating our current results with gene
expression data.
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