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Abstract. There is a significant demand for explainability in machine
learning, particularly in critical sectors such as healthcare. In that aim,
we use Inductive Logic Programming to automatically learn non-trivial
relations between patients’ predictive factors of post-intubation compli-
cations. We evaluate our system performance based on the interpretabil-
ity and correctness of the rules as judged by domain experts, as well as
through coverage assessments.

Introduction. In the healthcare field, explainability and interpretability are es-
sential for machine learning models. Traditional “black box” models often lack
the transparency required for clinical decision-making. In certain medical con-
texts, such as rare diseases, data is limited, making it difficult to train robust
models. Therefore, we require models that can perform efficiently even with small
datasets, providing predictions that are based on semantics and logic rather than
opaque processes. Moreover, it is crucial to have the ability to incorporate do-
main knowledge directly into the learning process, allowing the model to reflect
expert insights. Additionally, instead of relying on a single model, we need a tool
capable of generating multiple models or hypotheses, each explaining the data in
different ways, which can lead to deeper understanding and actionable insights.
We propose to use Inductive Logic Programming (ILP) [4,2], a method that
combines machine learning and logic programming, to generate models that are
both interpretable and explainable. ILP operates with first-order symbols such
as variables, constants, functions, and predicates, which are then used to build
more complex structures such as atoms and literals. Given a set of positive and
negative examples, along with background knowledge, ILP induces a hypothesis
(a set of rules) that generalizes the examples. For this work, we employ Progol [3],
a well-known ILP system, which is particularly effective for small datasets, as
it can generalize examples regardless of quantity. Importantly, ILP enables the
integration of domain knowledge into the learning phase, enriching the model’s
accuracy and relevance. Furthermore, ILP’s output is not restricted to a single
model—each induced rule is a standalone model, allowing multiple hypotheses to
be explored. We demonstrate the applicability of ILP using a real-world medical
case study involving patient data to predict post-intubation complications.
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Our Approach. An essential aspect of applying ILP is how data is represented.
To train the ILP system, we need structured data in the form of positive and
negative examples, supplemented by background knowledge [1]. We preprocessed
the dataset to clean special characters and standardize text to lowercase. The
dataset consisted of patients’ characteristics that serve as predictive factors for
post-intubation complications, which is the target class for our predictions. As a
result, the complication predicate is the one to learn and is exemplified for each
patient as either a positive, as a ground fact of the type complication(p;) (com-
plication present for patient p;) or negative (complication absent) with the nega-
tion of such a fact. We enhanced the learning process by incorporating domain
knowledge as ground facts or logical clauses. For instance, background informa-
tion for patient p; might include conditions such as short_neck(p;), hta(p;),
obese(p;), large_tongue(p;). In our case study, domain experts provided key
insights into predictive factors, such as the lemon and Cormack scores, and gave
us known rules such that a lemon score of 5 or greater indicates a likely difficult
intubation, which is expressed as:

hard_intubation(P) :- lemonscore(P, score), score > 5.

This ability to incorporate expert knowledge into the ILP system allows us to
enhance the model’s precision and interpretability. The results generated by ILP
are both interpretable and explainable. Each rule produced by the ILP system
functions as a standalone model, revealing relationships and patterns between
patient features and outcomes. For example, in our study, Progol induced several
rules. One such rule is:

complications(P) :- short._neck(P), hta(P).

This rule is straightforward and easy to interpret, clearly linking the presence
of a short neck and hypertension (hta) to complications. We also identified sev-
eral other rules that disclosed patterns between different patient characteristics.
Each rule provides a clear explanation of how specific patient features contribute
to complications We evaluated the induced rules through both offline and online
assessments. Offline, domain experts validated the rules using their medical ex-
pertise. Online, we applied the m-estimate to measure rule precision, assessing
how well each rule distinguishes between positive and negative cases. The m-
estimate smooths the ratio of positive to total examples, providing a balanced
and robust evaluation.

Conclusion. This study has demonstrated the effectiveness of ILP in generat-
ing interpretable models for predicting post-intubation complications. However,
there are still several areas for improvement, which we plan to study by us-
ing federated learning and languages including probabilities like ProbLog. On
the one hand, while ILP excels with smaller datasets, it faces scalability issues
when dealing with larger amounts of data. On the other hand, the healthcare
domain frequently contains fuzzy or uncertain data, which presents challenges
for traditional ILP systems that assume clean, well-structured inputs.
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