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Abstract. Despite the tremendous accuracy Artificial Intelligence (AI)
achieves in the medical domain, there is a clear need for explainable AI
(XAI) for increased adoption. In this work we implement and evaluate
several XAI methods on a Bayesian network for endometrial cancer.
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1 Introduction

Unprecedented accuracy has been achieved by AI models in healthcare, no-
tably in the diagnosis of cancers using deep learning models [1, 9, 3]. However,
to achieve increased adoption and trust in AI by clinicians, as well as adher-
ence to legislation, additional requirements arise, such as explainability. This
makes white-box AI models such as Bayesian networks (BNs) very relevant.
Even though Bayesian networks are interpretable, clinicians often still report
having trouble understanding the BN’s predictions [5]. To improve upon this,
methods for deriving explanations from a BN have been introduced [6, 2, 10, 4].

In this work we aim to implement and evaluate explanation methods for
Bayesian networks in healthcare. Most implementations of BN explanations use
either fictional situations or target other domains (e.g. legal [10]), and very few
were evaluated (e.g. analytically or with human participants). To demonstrate
this, we use the recently developed Endorisk Bayesian network [7] for prognosti-
cation of endometrial cancer patients. Patient data in this study included clinical
and biomarker variables, which makes BN a suitable model for this scenario.

2 Preliminary Results and Next Steps

Table explanations. The “Table” method [6] generates a table with textual expla-
nations with the most important factors contributing to the output. It generates
explanations in three different levels, giving the reader the choice of how much
in-depth they would like to have an explanation, which can be useful in cases
where factors such as time apply to a decision-making process.
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Fig. 1. Patient evidence (left), Table explanation (middle) and Counterfactual expla-
nation (right-top: before intervention; right-bottom: after intervention on citology).

Counterfactual explanations. The second method is a counterfactual explanation
of the model output. In a counterfactual explanation, a “what if” scenario is
created to advance the understanding of the model reasoning. For example, a
counterfactual can be calculated for one or more of the evidence variables to see
what the output would be if those variables would have been different, showing
their importance to the predicted outcome. For this calculation, we assume that
the model is a causal Bayesian network as indicated in the original study [7].

Results. The Endorisk Bayesian network [7] has 18 nodes, including clinical,
histopathological and biomarker data. The main targets are lymph node metas-
tasis (LNM) and 5-year survival (DSS5). For this experiment, two patients were
simulated with different prognoses, based on expert consultation. In this ab-
stract however, we will only show one trial patient. As a baseline, according to
the Endorisk model, a patient without any evidence noted has a chance of LNM
of around 9%, and a chance of DSS5 of 93%.

The trial patient has evidence shown in Figure 1. These markers give the
patient a chance of LNM of 76% according to the model, so we consider this
a high-risk patient. In Figure 1, Table output and Counterfactual output for
atypical cells in cytology (Cytology) are also shown. For Table, level 1 and 2
are shown, which outline the significant evidence for the LNM prediction, their
impact and the changes in the nodes that have a direct influence on LNM.

As for counterfactuals, small changes are considered to explore alternative
scenarios. In this case, Cytology is considered, as the result of the counterfactual
shows that if there would have been no atypical cells in cytology, LNM would
have a 90% chance of being not present. This is a big change from the original
outcome, which had a 70% chance of LNM being present.

Next steps. This research will provide a thorough evaluation of explanations for
a medical Bayesian network, which can hopefully also serve as inspiration for
explaining other healthcare cases. Our next steps include: add more fictional pa-
tients (yet realistic); implement other BN explanation methods (e.g. [10]) as well
as model-agnostic explainable AI methods [8]; finally, evaluate the explanations
with experts/non-experts using (semi-structured) interviews and questionnaires.
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