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Introduction Disentangled Representation Learning (DRL) techniques have
found significant application in the context of cross-modal medical image seg-
mentation [6], often focusing on Content-Style Disentanglement (CSD) [1] which
separates a content (e.g., spatial information) from a style (e.g., appearance in-
formation) representation. However, current methods have high computational
costs and lack interpretability as they require complex architectures [14,16,10,13]
and it is often unclear whether the learned representations are effectively dis-
entangled or not [9,6]. We address these challenges by introducing composition-
ality [12] as an inductive bias into a cross-modal segmentation framework, to
reduce complexity and enhance interpretability. Our proposed end-to-end net-
work1 enforces compositionality on the learned representations using learnable
von Mises-Fisher (vMF) kernels [7], facilitating CSD and producing interpretable
representations that effectively separate different anatomical structures.

Methodology Figure 1 shows our proposed framework. We aim to segment
images from a target domain y ∈ Y , using images from a source domain x ∈ X
with corresponding labels mx ∈ M . In the context of CSD, we adopt a two-stage
disentanglement approach, by first roughly aligning the deep features Z and then
filtering out all remaining target-specific domain information with the vMF ker-
nels [7] KvMF . The model is trained with a cross-cycle consistency objective [17]
to learn the bi-directional mapping between the two domains and a generative
adversarial learning objective [8], to generate plausible, translated images. More-
over, we employ a cluster loss to fit the vMF kernels to be the style representa-
tions of several compositional components of human anatomy [7]. Lastly, we use
a standard dice loss on the predicted masks of the translated target images with
the corresponding source labels. Code and checkpoints are publicly available at:
https://github.com/Trustworthy-AI-UU-NKI/Cross-Modal-Segmentation.
1 Accepted at the Deep Generative Models workshop at MICCAI 2024. Proceedings
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Fig. 1: Overview of the proposed framework. X and Y denote the source and
target domain from which the encoders Ex and Ey extract the deep features
into Z. From Z, the deep features can be translated to either domain with the
generators Gx and Gy, or compositional representations ZvMF can be obtained
via the vMF kernels (KvMF ). From ZvMF , the segmentation model S predicts
the final segmentation masks. Dx and Dy denote the domain discriminators.

Table 1: Quantitative results on the cardiac dataset with CT as target domain.
MRI → CT MYO LV RV

DSC(%) ASSD(mm) DSC(%) ASSD(mm) DSC(%) ASSD(mm)
UNet-FS [11] 87.12.4 1.30.3 92.11.1 1.40.2 90.22.4 1.80.4
UNet-NA [11] 5.34.7 26.76.2 37.223.4 19.716.6 25.422.5 22.99.8
vMFNet [7] 2.31.4 26.74.0 52.415.3 10.83.7 40.49.7 12.51.3
DRIT [5]+UNet [11] 47.58.5 5.32.0 69.53.3 6.01.4 67.95.8 5.50.8

DRIT [5]+RUNet [4] 58.43.8 3.90.2 75.13.1 5.10.5 71.52.5 6.71.5
Proposed 65.14.8 3.00.6 80.24.7 4.71.5 77.33.6 5.62.0

Results We tested our model on an unpaired public cardiac CT & MRI dataset
(MMWHS [18,15]), and an abdominal multi-modal MRI dataset (CHAOS [3,2])
and compared it with several segmentation baselines. Table 1 presents the quan-
titative results for segmenting the Myocardium (MYO), Left Ventricle cavity
(LV), and Right Ventricle cavity (RV) with CT as the target domain. Overall,
our proposed method outperforms all cross-modal baselines. Furthermore, the
different channels of the learned compositional representations demonstrated dis-
tinct activation patterns corresponding to several anatomical structures. Lastly,
introducing compositionality reduced training times significantly.

Conclusion We introduced compositionality into a cross-modal segmentation
network to address the lack of interpretability and high computational costs in
the current models. By enforcing the learned representations to be compositional,
we effectively disentangle the style and content features of different anatomical
structures. The qualitative and quantitative experiments demonstrated enhanced
performance and interpretability while reducing computational costs.
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