
Empirical Hardness Analysis of MaxSAT

Max Verbinnen[0009−0002−7696−2954] and Sander Verwimp[0009−0007−9458−9192]

Supervisor: prof. dr. Luc De Raedt
Mentors: Jaron Maene and Vincent Derkinderen

Department of Computer Science, KU Leuven, Belgium
{max.verbinnen, sander.verwimp}@student.kuleuven.be

Over the past 35 years, significant research has been dedicated to examin-
ing the hardness of random instances of NP-complete problems [3,4,8]. SAT, as
the quintessential example of an NP-complete problem, has received particular
attention in this area.

We will focus instead on the maximum satisfiability problem MaxSAT, which
involves finding an assignment that satisfies the maximum number of clauses [1].
The literature on the hardness of MaxSAT, however, is comparatively sparse.
This is unfortunate, as MaxSAT is a fundamental problem in computer science
with numerous practical applications such as scheduling [2]. We therefore extend
the existing research on MaxSAT by conducting empirical analyses similar to
those already performed for SAT.

Those previous studies primarily investigated the hardness of SAT in terms
of order and density [9,3,4]. Here, the order of an instance refers to the number
of variables, while the density is defined as the ratio of the number of clauses to
the order [4]. It is well established that SAT instances are easily solvable at both
low and high densities [3]. Therefore, the most challenging problems are found
in the intermediate density range. Mitchell et al. empirically demonstrated that
the hardest instances occur at a density of approximately 4.3, which is nearly
the exact density at which on average 50% of instances are satisfiable [9]. We will
refer to this 50% point as the crossover point [5]. The transitions from easy to
hard and back to easy as density increases are characterised as an easy-hard-easy
phase transition [10].

To initiate the hardness analysis of MaxSAT, we set up a series of experiments
utilising the state-of-the-art MaxSAT solver RC2 as implemented in PySAT [6,7].
As a measure of hardness, we consider the execution time. More precisely, we
consider the median execution time of multiple repetitions performed by the
solver on random formulas with the same order and density, as was done for
SAT [4].

What exactly is the relationship between the hardness of a MaxSAT problem
and its two crucial parameters: order and density? That is the first question
we aim to answer. Zhang observed that the hardness of a MaxSAT problem
increases when the density increases [11]. Our experiment builds on this finding
by also including order as a parameter. We measure the median execution time
of the solver for formulas with varying orders and densities. The results of this
experiment are presented in Figure 1, with the vertical axis for execution time
displayed on a logarithmic scale.
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Fig. 1: Median execution time of RC2
as a function of density and order

Fig. 2: Median execution time of RC2
as a function of order

This figure confirms the easy-hard phase transition described by Zhang [11].
MaxSAT is easily solvable up until it reaches the crossover point at density
≈ 4.26. Beyond the crossover point, unlike SAT, MaxSAT remains in the hard
zone. Our experiment also shows that increasing the order results in longer
execution times.

However, Coarfa et al. argued that the terms “easy” and “hard” are used
too loosely when describing the phase transition [4]. We therefore conduct a
second experiment studying the time complexity to determine where exactly
the transition from easy to hard occurs, with easy and hard now defined as
polynomial and exponential time complexity, respectively. For this experiment,
we consider the execution time of the solver as a function of solely the order,
consistent with the experimental setup of Coarfa et al.

The result of this experiment is shown in Figure 2 for several fixed densities.
The execution time is again displayed on a logarithmic scale. For density 3,
the execution time follows a polynomial growth, which appears as a logarithmic
curve in our figure. For density 4.26, on the other hand, the linear curve clearly
indicates exponential growth.

Further analysis reveals a gradual transition from polynomial to exponen-
tial complexity between densities 3 and 4.26. Starting at density 3.6, the solver
follows a superpolynomial but subexponential trend. This subexponential trend
continues up to density 4.2, after which the solver’s complexity becomes expo-
nential.

In conclusion, our experiments show that MaxSAT becomes harder as the
density or order increases. They also reveal a novel phase transition from poly-
nomial to exponential time complexity prior to the crossover point. Future work
will need to determine the extent to which these results are solver-dependent. Fi-
nally, for our thesis we have developed a MaxSAT game1 with varying difficulty
levels based on the aforementioned results.

1 The MaxSAT game is playable at https://maxsat.vercel.app/.

https://maxsat.vercel.app/
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