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An important task in time series data mining is motif discovery. Motifs are
repeated patterns in time series. Most motif discovery algorithms focus on find-
ing motifs within single time series [7], the most prolific method for discovery
being the Matrix Profile, which finds motif pairs [8,11,10,5]. However, the Os-
tinato algorithm [2] allows the discovery of consensus motifs, motifs that occur
frequently across time series. As is the case for the Matrix Profile, Ostinato re-
quires a user-defined motif length. Though VACOMI [9] makes enumeration over
several lengths more efficient, variable-length consensus motif discovery remains
a costly procedure.

We introduce FRM-Miner, which can find frequent motifs of variable length
in time series databases. In contrast to consensus motifs, frequent motifs do not
necessarily occur in every time series across a database, which is a constraint
that is more typical for real-world scenarios. Instead, the optimal support and
length are determined automatically for each motif. Motifs of varying length
are of particular interest to us as they are often encountered in real-world ap-
plications [9,1]. In order to illustrate our main contributions, the main steps of
FRM-Miner are visualised in Fig. 1, using contours of cattle in the MPEG-7 data
set [3]. This algorithm is much more efficient than Ostinato and VACOMI. This
encore abstract provides a summary of prior work by the same authors that was
presented at IEEE BigData’23 [6].
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Fig. 1. Pipeline of all steps in FRM-Miner. The time series are discretised to sequences.
Frequent sequence motifs are discovered and mapped back to time series occurrences,
which are then used to construct representative motifs.
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Fig. 2. Four EPG telemetry recordings of Asian citrus psyllid behaviour (left). Data
set taken from Kamgar et al. [2]. Consensus motif of length 800 (right).

FRM-Miner uses the SAX representation [4] to discretise the time series and
applies sequential pattern mining to them. Then, the discovered discrete patterns
are filtered on their overlap with other patterns and patterns with too much
overlap are removed. The resulting set of patterns is then mapped back to the
continuous time series domain. The occurrences of the patterns are combined to
create a representative motif. Lastly, the representative motifs are ranked based
on the distances between the motif and its occurrences.

Python and C++ implementations, as well as the code and data used for
our experiments are available at https://github.com/steenrotsman/frm-miner.
Additional code for a subsequent (journal) version will be made available in the
same repository.

In order to illustrate the real-world utility of FRM-Miner, we compare its mo-
tifs with the consensus motif of a time series database. Fig. 2 shows a collection of
four time series that record Asian citrus psyllid behaviour with EPG telemetry.
As becomes apparent from the figure, Ostinato finds a well-conserved consensus
motif of length 800 in this noisy time series database [2]. With FRM-Miner, we
are able to find a representative motif that closely resembles the consensus motif,
as well as a previously unknown motif. Both representative motifs are shown in
Fig. 3.
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Fig. 3. Representative motif and motif occurrences for insect telemetry. Parameter
settings are minsup = 1 (left), minsup = 0.5 (right), seglen = 50, α = 4. The left
representative motif corresponds to the motif found by Ostinato, the right motif was
previously unknown.

https://github.com/steenrotsman/frm-miner
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