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1 Introduction

For autonomous robots to integrate into human-centered environments, agents
should learn to adapt to human preferences. As the world is full of distracting
information, we aim to build reinforcement learning (RL) agents that learn a
reward function from human feedback, while being robust against irrelevant
noise. This work proposes R2N (Robust-to-Noise), the first preference-based RL
(PbRL) algorithm that leverages dynamic sparse training to learn robust reward
models. We demonstrate that R2N can adapt the sparse connectivity of its neural
networks to focus on task-relevant features, enabling R2N to outperform state-
of-the-art PbRL algorithms in multiple locomotion and control environments.

2 Method

R2N consists of two main steps. First, at initialization, we randomly prune the
input layer of the reward model to a sparsity level s. Second, after every ∆T
weight updates, R2N updates the sparse connectivity: a certain fraction d ∈ (0, 1)
of the active weights is dropped (weights with the lowest magnitude), and the
same number of inactive weights is activated in new locations. We use RigL [2]
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Fig. 1: Learning curves of R2N (solid) and the PbRL baselines (dotted).
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(d) DST Ablation

Fig. 2: Further studies on (a) effects of noise fraction, (b) effects of feedback
budget, (c) average number of neural network connections to task-relevant versus
noise features in a reward model with R2N, (d) DST component ablation.

to select which inactive connections to grow. We also apply this dynamic sparse
training (DST) [7] procedure to the input layers of the actor and critic networks
in the RL agent, as done in ANF [3], a noise filtering algorithm for regular RL.

3 Experiments

We evaluate R2N on Extremely Noisy Environments [3], an adaptation of the
DeepMind Control (DMC) Suite [10] where random irrelevant (noise) features
are added to the state space of each environment. We use the tasks Cartpole-
swingup and Cheetah-run (with 90% noise added), Quadruped-walk and Humanoid-
stand (with 70% noise). To showcase the utility of R2N, we integrate it with three
PbRL baselines: PEBBLE [5], SURF [9], and RUNE [6]. We set our hyperpa-
rameters to s = 80%, ∆T = 100, and d = 0.2. We use a simulated teacher
that provides preferences between two trajectory segments according to the true
reward function. Although our future work will involve human teachers, simu-
lated feedback has commonly been used in prior works [1,4,5,6,8,9] to avoid the
expense of human subject studies.

4 Results and Analysis

In Figure 1, we find that adding R2N significantly improved both the sample
efficiency and final return of each baseline PbRL algorithm in all environments
tested. We perform sensitivity analysis on the Cheetah-run environment. In Fig-
ure 2a, we find that for higher noise fractions, R2N maintains a significant im-
provement in final return. In Figure 2b, we show that R2N outperforms the
baseline for all tested feedback budgets. We analyze in Figure 2c the number of
connections to each type of input feature; R2N quickly learns to focus its con-
nectivity on task-relevant features. And lastly, in R2N we apply DST to both
the reward model and actor/critic networks, so we ablate these components in
Figure 2d. Full R2N outperforms variants that apply DST to only one of these.
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