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In AI planning, we want to find a plan by selecting the next action based
on the current state and the goal to be achieved. Solvers for these problems use
model-based approaches independent of the domain or specific problem instance.
This creates a very general framework, allowing us to solve a wide range of prob-
lem types. AI planners have benefited from a range of heuristics, for example,
by reaching landmarks: properties of states that you must reach on your path to
reach the goal [4]. Landmarks have resulted in significant solving speed up, as
the search through the state space can be prioritized toward a ‘subgoal’ on the
way to the final goal. However, these landmarks have to be extracted for every
problem instance before they can be used, and they are limited to the existing
properties of the domain. Therefore, we propose a new type of landmark that we
call generalized landmarks. These are computed for an entire domain of problem
instances and consist of first-order functions so they can be more expressive.

The problem domain in AI planning consists of predicates over objects [3]. For
each domain, we can have a set of problem instances with a different number of
objects. For example, consider a package delivery problem in a grid world: there
are locations, packages, and trucks, and the predicates could be at (location
of packages and trucks), empty, and carrying (to specify the transportation of
packages by trucks), and we define a goal location for all the packages. A tradi-
tional landmark might say that before we can deliver package1 to location3,
truck2 must carry package1, and before that, truck2 must be empty. This is
quite limited and not very informative, so our new generalized landmark could
simply say that any package that has to be delivered must first be carried by
some truck; and prior, the truck must be at the same location as the package
(without saying which location, which truck, or which package, specifically).

To define generalized landmarks that capture the above example, we no
longer focus on the predicates of a domain but use a set of descriptive domain
features, which are first-order functions over the domain predicates that can be
either numerical or Boolean [1]. These features can capture more general proper-
ties of states, like a truck and a package being at the same location. Moreover, we
introduce a compound feature, which is a conjunction of features that together
describe a state. We can now define generalized landmarks as compound features
that identify a state that must be reached to achieve the goal.

We want generalized landmarks to be more informative than traditional land-
marks, and we propose a new method to discover them from previous plans.
Since the plans already contain information on how to achieve this goal, we do
not have to consider the complete state space of a domain but can limit our
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discovery process to the state space constructed by the state trajectories of the
plans. So, given a small set of problem instances and several plans, we first draw
up the state space of the state trajectories. Then, we compute a set of features
describing the state trajectories, of which we select the compound feature that
identifies some state in each trajectory. The landmark is then a compound fea-
ture that defines the earliest next state across all trajectories. This process can
then iteratively detect a chain of landmarks.

Besides generalized landmarks being independent of the problem instance,
they are also more powerful in capturing repetitive patterns in a plan. We detect
the recurrence of already detected landmarks to identify loops in the landmark
chain, thereby creating a graph of landmarks. Moreover, we can also detect the
optional condition when the loop is possible. For example, consider the land-
mark graph in Figure 1 and the package delivery problem. Suppose we have two
packages that have to be delivered at the same target location, then first we
need to go to the package (landmark PackageLocation), then we need to pick
it up (landmark CarryingPackage), next, we have to reach the dropoff loca-
tion (landmark GoalLocation), and now we can deliver the first package. For
package 2, we have to achieve the same steps, and then finally, we can deliver
all packages (landmark DeliverAllPackages). The loop avoids the repetition of
some landmarks, while being able to capture the landmarks for instances with
one or more packages. The edge that creates the loop is thus not a must-take
transition, and the condition specifies when you can take this transition.

We implemented the discovery in an Answer Set Programming model [2],
which enables us to quickly find the compound feature that constitutes a land-
mark. We only need a small set of plans as input to find a landmark graph rep-
resentative of larger instances in the same domain. We show the landmark graph
can be used in planning by creating a new heuristic that counts the landmarks
that have been achieved so far and gives higher priority to exploring states that
have the most achieved landmarks, also respecting their orders and loop condi-
tions. This method shows that generalized landmarks can indeed be used to find
plans in new instances, but the planning process can still be optimized.

In conclusion, we propose a framework for discovering generalized landmarks
and using them in a planner. Generalized landmarks generalize across instances
in a domain, also scaling to larger problem instances than the training set. Fur-
thermore, they capture symmetric and repetitive properties of plans and illus-
trate the necessary conditions for using repetitive plan fragments. Finally, they
give an abstract representation of plans for a domain, allowing us to explain the
steps for solving problems in this domain.

PackageLocation CarryingPackage GoalLocation DeliverAllPackages

DeliverOnePackage

Fig. 1. Landmark Graph for Package Delivery Problem.
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