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Abstract. This study proposes deep forest approaches that incorporate
tree embeddings (TE) for weak-label learning, exploring new label impu-
tation techniques to be applied after each layer. We introduce two novel
imputation methods: Strict Label Complement (SLC) and Fluid Label
Addition (FLA). SLC establishes fixed estimates for missing annotations
as upper limits, while FLA adjusts imputation probabilities dynamically
at each layer. The proposed models achieve comparable or superior per-
formance to the state-of-the-art, highlighting the potential of TE and
imputation methods in weak-label learning.
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1 Introduction and method

Weak-label learning consists of multi-label classification problems in which the
negative label annotations are unreliable [5]. Deep forests [6] have been proven
to be an effective algorithm in these settings [4]. A deep forest is a sequence
of decision forests, in which each forest augments the feature space before the
next one is trained. The current state-of-the-art technique for tabular weak-label
learning [4] enhances deep forests with a label imputation procedure applied af-
ter each layer. However, the technique tends to overestimate of the number of
missing positives and relies on inefficient criteria for model-length control. Tree-
embeddings (TE) are feature augmentation techniques leveraging the structure
of decision trees [3]. Recent advances [3] have shown that TE improve the per-
formance of deep forests in the supervised case, but the result was not yet tested
in the context of weak labels.

Our study [1] is thus concerned with two main objectives: i) investigating the
benefits of employing TE for weak-label learning tasks; and ii) proposing new
techniques for label imputation in deep forests. Two label imputation methods
were proposed, named Strict Label Complement (SLC) and Fluid Label Addition
(FLA). SLC determines fixed estimates for the number of missing annotations
and uses them as upper limits for a label imputer model. FLA performs such
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estimates on each layer, adjusting the probabilities of imputation without setting
an upper limit. We then introduce four new algorithms: CaFE-SLC and CaFE-
FLA (which incorporate TE); and SLCForest and FLAForest (which do not).

2 Experiments

We performed 5-fold cross-validation on 13 multi-label datasets of various scien-
tific domains. We only used the labels with at least 30 positive annotations. 30%,
50% and 70% of these positive annotations were randomly masked to generate
weak label tasks.

For performance metrics considering binary outcomes (Fig. 1a), the mod-
els employing label imputation were consistently the top-performers. CaFE-SLC
and CaFE-FLA outperformed SLCForest and FLAForest, demonstrating the ef-
ficiency of TE for weak-label settings. When scoring the predicted probabilities
directly, our models consistently outperformed the main baseline, LCForest [4]
(Fig. 1c). If no label masking is performed, imputation still significantly im-
proved performance in some cases. For example, FLAForest performs better
than CaFE [3] and gcForest [6] (Fig. 1b), suggesting the existence of unexpected
missing positives.

(a) MCC, 70% missing (b) MCC, supervised (c) AP, 70% missing

Fig. 1: Percentile ranks for the Matthews Correlation Coefficient (MCC) and
Average Precision (AP). Crossbars connect models that are not statistically dis-
tinguishable (p > 0.05, Wilcoxon signed ranks).

3 Conclusion

TE and label imputation proved to be effective strategies for deep forests applied
to weak-label learning. Our models resulted in comparable or superior perfor-
mance to the state-of-the-art in all the investigated settings. In future works, we
will expand our methods to hierarchical multi-label classification [2] and partial
multi-label learning.
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