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Abstract. This project aims to demonstrate the feasibility of decoding
3D trajectories of both left and right upper limbs using EEG and motion
capture data, with minimal preprocessing. We investigate decoding imag-
ined trajectories and explore the role of different motion representations,
such as position and velocity. Our findings suggest potential improve-
ments for continuous control applications, aligning with advancements
in non-human primate studies. This work could impact prosthetic con-
trol, rehabilitation, and BCIs by offering real-time decoding of motor
execution and imagery tasks.
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1 Introduction

Decoding human motor activity from brain signals, specifically for the upper
limbs, is a rapidly evolving field with profound implications for brain-computer
interfaces (BCIs), rehabilitation, and prosthetic control. Non-invasive BCIs based
on electroencephalography (EEG) provide a relatively safe avenue for studying
motor functions without invasive procedures.

The main objective of this project is to demonstrate the feasibility of decoding
3D trajectories of both upper limbs using a research-grade EEG device and state-
of-the-art motion capture system. This is achieved with minimal preprocessing,
leveraging deep learning to automate feature learning. Additionally, we aim to
investigate the decoding of imagined trajectories (motor imagery), expanding on
successful motor execution decoding.

2 Related Work

Non-invasive BCIs such as EEG offer high temporal resolution, making them
practical for real-time motor decoding, though they have lower spatial resolution.
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Traditional EEG decoding focused on classification tasks, such as distinguishing
left vs. right-hand movements, which lacks continuous control, thus motivating
regression-based models better suited for prosthetic control. Deep learning ap-
proaches have recently demonstrated improved accuracy in decoding continuous
3D motion with minimal preprocessing.

Early work in this domain concentrated on 2D trajectories; however, modern ef-
forts, including those of [2] and [1], have advanced to decoding 3D limb motion.
Recent studies show that velocity, a proprioceptive signal, may offer improved
decoding accuracy over position alone, particularly when decoding motor im-
agery tasks, which is a central focus of this research.

3 Methodology

3.1 Experimental Design

Participants will be seated 1.5 meters from a screen where targets appear at ran-
dom locations. During each 3-second period, participants extend a designated
arm toward the target without contact. This randomized target presentation,
adapted from Meta’s engagement experiments [5], aims to introduce dynamic
task variability.

The experiment consists of four runs, with each run having blocks for actual and
imagined movements, where participants either perform or imagine reaching the
targets. Imagined movement tasks require participants to keep their arms at rest,
imagining movement in synchrony with stimuli, as adapted from [4].

3.2 Data Collection

EEG signals will be recorded using a 32-electrode system, synchronized with
kinematic data from a motion capture system. Kinematic data will capture 3D
trajectories of hand, elbow, and shoulder joints during movement trials, pro-
viding reference templates for imagined movement decoding. Hardware-clock
synchronization will ensure precise alignment of EEG and motion data streams.

4 AI Implementation

Traditional methods like multivariate linear regression (MLR) have shown the
feasibility of motor decoding, but recent deep learning models, such as CNN-
LSTM architectures, significantly outperform traditional techniques, achieving
correlation coefficients up to 0.84 compared to MLR’s 0.67 [1]. Transformer-
based models, such as [3], effectively capture long-term dependencies, achieving
remarkable accuracies on EEG-based motion decoding, highlighting the poten-
tial of these architectures in complex motor trajectory tasks. This project will
test hybrid CNN-LSTM models and transformer-based networks for their capa-
bility in handling the temporal and spatial complexities of EEG signals in motor
decoding.
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