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We consider the fundamental problem of constructing control policies for en-
vironments modeled as Markov decision processes (MDPs) with formal guaran-
tees. We suggest a framework that combines two techniques with complementary
benefits and drawbacks, which we describe next.

The first technique is reinforcement learning (RL) in which the designer
chooses how rewards are issued, and policies are trained to optimize rewards. In
particular, deep RL (DRL, e.g., [4]) is successful in domains of high-dimensional
feature spaces with unknown dynamics, surpassing human capabilities.
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Fig. 1: The agent is trained to exit each
room, in every possible direction. The
training is done through parallel simu-
lations where an abstraction of the en-
vironment is learned via NNs, yielding
a latent model for each room. Simulta-
neously, a policy is learned via DRL on
the learned latent representation, which
guarantees the agent’s low-level behav-
ior conformity through PAC bounds.

On the downside, designing a reward
function is a challenging engineering
task in which the designer needs to
both train the agent to exhibit de-
sired behavior and train it efficiently.
Specifically, for long-term objectives,
one needs to deal with the notorious
problem of sparse rewards [2] by guid-
ing the agent to the intended behavior
[3]. This in turn, adds more problems
as the “desired behavior” is specified
via rewards, and reward engineering
leads to behavior that may not align
with the user’s intentions.

The second technique is reactive
synthesis [5], which constructs an op-
timal policy based on a model of the
environment and objectives specified
as a logical formula. In contrast to
DRL, synthesis provides guarantees
that the policy satisfies the specifi-
cation and allows users an intuitive
and mnatural specification languages.
The reliance on an explicit environ-
ment model is its key disadvantage;
the technique struggles with scalabil-

ity and domains in which dynamics are partially known.
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We propose a framework that aims to gain the best of both worlds. We require
little prior knowledge of the structure of the environment: the input is a map
given as a graph, where each vertex embeds an (unknown) room, modeled as
an MDP. We argue this is a natural requirement in many domains. Think of a
robot that need deliver a package in a warehouse divided into rooms amid moving
obstacles (e.g., forklifts, workers, or other robots). While it is infeasible to provide
a model describing all the possible interactions the agent may have within the
warehouse and the dynamics of the moving obstacles, one can reasonably assume
a map is provided.

Our framework proceeds as follows. We first train DRL policies to achieve
short-horizon, low-level objectives in the rooms, e.g., act safely and exit a room
via a designated target (Fig. . We then construct a high-level planner that
chooses which policy acts in a room: based on the low-level policies and the
given map, we apply synthesis to achieve a long-horizon objective, e.g., reach the
target location (Fig. . A key challenge is obtaining an environment model for
synthesis, i.e., a model of the operation of the low-level policies. We develop a
novel DRL procedure that learns a latent model of each room where the satis-
faction of the low-level objective can be formally verified.

T mmarize, w resen :
0 su arize, g present a High level r S
novel framework that incorporates model (map) [
DRL into the synthesis process, \
: : Low-level latent |- —
which offers the following key ad-  [Siioricies =T
|

vantages. First and foremost, it pro-
th:;\t satisfies the specification

vides guarantees on the operation
of the controller. As mentioned, it
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are merged to apply synthesis while main-
taining their guarantees.

itive specification language. In addi-
tion, it offers a remedy for the no-
torious challenges of sparse rewards
in RL. Interestingly, it also enables
reusability: the policies in rooms and their guarantees are reusable across similar
rooms and when the high-level task or structure change.

A full version of this paper is available in [1J].
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