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1 Introduction

Photovoltaic (PV) and Solar Thermal (ST) panels mounted on rooftops form
a cornerstone in the transition to fully renewable energy generation. However,
due to the large gap in data on the number and location of these panels, policy-
makers have trouble determining the effectiveness of policies and energy network
administrators have trouble building efficient networks. In this study, a model
was proposed to automatically classify and segment PV and ST panels from
aerial imagery to alleviate this issue. The main contributions of the study are:
(1) a novel manually annotated dataset for PV and ST locations on Dutch aerial
imagery made publically available [2]; (2) a two-stage pipeline for PV and ST
classification and segmentation; (3) an approach to incorporate building infor-
mation in the model in an attempt to improve results; (4) a novel method for
weakly-supervised pseudo-label generation based on greedy CAM refinement
and SAM generated segmentations; (5) application of semi-supervised learning
in PV and ST segmentation.

2 Methodology

A novel dataset of aerial images in the Netherlands, containing image-level and
pixel-level annotations of PV and ST panels was build and made publicly avail-
able [2]. The dataset contained 50,000 image-level labelled samples, and 4,896
pixel-level annotated samples. This dataset was then used to train both a clas-
sification and segmentation model, to build the final 2-stage pipeline. Both
models were based on ConvNeXtV2 [6], with a DeepLabV3+ [1] segmentation
head used for segmentation.

Masked auto encoder [3] pre-training was employed utilising images from the
target domain. For training of the classification model, the image level labels
were used for supervised training with the following variants: binary (presence
vs. absence of panels) and multi-label (PV and/or ST). Additionally, utilising
building polygons as a fourth input channel to the network was experimented
with.



For segmentation, a standard fully-supervised approach was tested, as well
as two novel approaches utilising semi-, and weakly-supervised methods. In the
fully supervised case, pixel level training labels were used only. In the semi-
supervised case, the remaining images with only image-level labels were used
as unlabelled samples in the CorrMatch framework [5], which was adjusted to
use ConvNeXtV2 as a backbone rather than ResNet. Finally, a segmentation
network was trained in a weakly-supervised manner (See Figure 1). This was
achieved by utilising class activation maps of a greedily retrained classification
model to select class agnostic masks generated by the segment anything model
[4]. Finally, CorrMatch was again used such that only high-confidence pseudo
masks could be incorporated as labelled samples, and the remaining samples
could be used as unlabeled samples.
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Figure 1: Figure depicting the strategy used to generated pseudo masks for
weakly supervised segmentation by utilising class activation maps and the seg-
ment anything model.

3 Results

The model is shown to exhibit strong classification performance, after finetuning
models pre-trained either on ImageNet or Dutch aerial images with F1 scores
of 0.954 and 0.946 respectively on the binary task. Performance of fully-, semi-,
and weakly-supervised segmentation models is evaluated. It is shown that the
best performance is achieved by combining a small set of manually annotated
mask labels with a larger set of unlabelled data in a semi-supervised manner.
This semi-supervised approach leads to an IoU of 73.3% for binary segmentation,
and a class-specific IoU of 77.0% and 37.6% is achieved for the PV and ST classes



respectively.
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