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Abstract. To effectively study complex causal systems, it is often useful
to construct representations that simplify parts of the system by discard-
ing irrelevant details while preserving key features. The Information Bot-
tleneck (IB) method is a widely used approach in representation learning
that compresses random variables while retaining information about a
target variable [8]. However, traditional methods like IB are purely sta-
tistical and ignore underlying causal structures, rendering them ill-suited
for causal tasks.

In this paper, we propose the Causal Information Bottleneck (CIB), a
causal extension of the IB that compresses a set X of chosen variables
while maintaining causal control over a target variable Y . This method
produces representations T that are causally interpretable and can be
effectively utilized in reasoning about interventions. We present experi-
mental results demonstrating that the learned representations accurately
capture causality as intended.

To achieve this, we extended the notion of optimal representation to
the causal setting, resulting in an axiomatic characterization of opti-
mal causal representations. Just as the IB Lagrangian Lβ

IB = I(Y ;X) +
βI(Y ;T ) can be minimized to learn optimal representations [1], so can
the CIB Lagrangian Lβ

CIB = I(Y ;X)+βIc(Y | do(T )) introduced in this
paper be used to learn optimal causal representations.

The CIB, which needs to be computed during the optimization process,
depends on the interventional distributions p(y | do(t)) through the term
Ic(Y | do(T )). We proposed a definition of representation intervention,
which defines the post-intervention distributions p(y | do(t)) in terms
of the post-intervention distributions p(y | do(x)). As a consequence,
p(y | do(t)) is identifiable when the distributions p(y | do(x)) are identi-
fiable. We focused on scenarios where there exists a set Z satisfying the
backdoor criterion relative to (X,Y ) [6]. In those cases, the p(y | do(x)) is
identifiable, and one can make use of a backdoor adjustment formula for
representations to derive a backdoor adjustment formula for p(y | do(t)),
enabling the successful application of a minimization algorithm to mini-
mize the CIB.

For optimizing the CIB in our experiments, we introduced a local search
algorithm, referred to as projected simulated annealing gradient descent
(pSAGD), which integrates simulated annealing and projected gradient
descent techniques. To compare different representations learned by our
algorithm, we introduced a notion of equivalence (∼=) of representations,
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which partitions representations into equivalence classes, termed abstrac-
tions. We demonstrated that the variation of information can be used
to assess whether two representations are equivalent, provided one of
them is deterministic. Our experiments showed that the learned repre-
sentations in three toy models of increasing complexity align with our
expectations (up to ∼=).
Looking forward, future research directions include exploring alterna-
tive methods for incorporating causality into the information bottle-
neck framework, such as focusing on causal properties other than causal
control, like proportionality [7]. Our approach can also be extended to
scenarios where the backdoor criterion does not hold by leveraging do-
calculus to facilitate the automatic computation of post-intervention dis-
tributions for interventions on representations. Another natural next step
involves adapting the CIB method to continuous variables, potentially
using variational autoencoders [5] to minimize the CIB Lagrangian, as
previously done for the standard IB [2]. Lastly, exploring the relation-
ship between our representation learning method and the framework of
causal abstractions is also a promising avenue for future research, similar
to how [3] connect the latter with the approach from [4].
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