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1 Introduction

Large language models (LLMs) have already started to outperform human base-
lines on various tasks, including some that require mere language understanding
[16] and others that also require reasoning [18,21]. However, one of the main is-
sues remaining to be solved is their generalizability to new situations or domains
[10,4]. A critical cognitive skill that enables generalization in humans is analogi-
cal reasoning [12, 5, 3]. With analogical reasoning, humans can perceive, discern,
and utilize the similarities between situations or events based on (systems of) re-
lations rather than surface similarities [6, 1]. Due to the importance of this ability
for Al systems, many studies have created analogical reasoning benchmarks for
language and visual models [17,20, 15,9, 14]. An opportunity arises to ground Al
benchmarking in analogical reasoning theories in cognitive psychology. We note
two gaps in this direction: larger-scale benchmarks have commonly focused on
word-based proportional analogies of the form A:B::C:D [11], whereas cognitively
grounded benchmarks with longer texts are usually limited in size but richer in
terms of theoretical depth and the complexity of the captured analogies [8,19].
The narrow scientific context of these benchmarks hinders the scientific insight
into LLMs’ analogical reasoning in more common, daily situations.

2 Methodology

Our paper’s methodological contributions are twofold. First, we design a com-
prehensive theory-grounded framework (Figure 1) that extracts analogies
from narratives by operationalizing the link between existing analogical and

* This paper [13] was accepted for publication in the Transactions of the Association
for Computational Linguistics (TACL) journal on 29/04,/2024.
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Fig. 1. The ARN framework for evaluating analogical reasoning on narratives.

narratology theories. Then, we introduce a binary QA task and benchmark:
Analogical Reasoning over Narratives (ARN) containing 1.1k triples of query
narratives, analogies, and distractors. Drawing on cognitive theories of analogy
[2, 7], we include system mappings, surface mappings, and their interactions
in ARN, which help us characterize analogical reasoning abilities of LLMs in four
different scenarios with varying levels of difficulty. The four levels are designed
to test the recognition of near/far analogs in the presence of near/far disanalogs.
ARN employs proverbs as the basis for system mappings and contrasts them
with surface-level mappings of overlapping characters, goals, actions, locations,
and relations. Utilizing proverbs in system mappings as distilled forms of hu-
man wisdom, complex relationships, and moral lessons, and narratives as the
primary medium in which people communicate, ARN facilitates extrapolating
the benchmarking findings to daily analogical reasoning tasks that LLMs could
be used for.

3 Results and Discussion

Human performance remains consistently high on both near and far analogies.
Evaluating multiple LLMs on ARN in a zero-shot setting suggests that while
models can recognize near analogies, their analogical reasoning performance de-
grades (by 35 absolute points on average) when detecting far analogies charac-
terized by the absence of surface mappings. This trend also holds for GPT4.0,
performing best on average but dropping to a below-random performance on
detecting far analogies in a zero-shot setting. Few-shot prompting with Chain-
of-Thought reasoning enhances models’ performance in far analogies while being
detrimental to solving near analogies. Overall, we show that LLMs’ analogical
reasoning over narratives lags behind humans, especially on far analogies, which
motivates further research on devising computational analogical reasoners on
narratives. Inspired by these findings, we plan to explore personalization in ana-
logical reasoning, investigating how models tailor analogy generation to individ-
ual users and contexts. We intend to improve Al systems’ relevance, adaptability,
and impact in real-world applications. ARN and the entire code of this analysis
are publicly released to support such endeavors at https://bit.ly /3xVTjbL.
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