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Introduction. Partially observable Markov decision processes (POMDPs) [6] for-
malize sequential decision making in a stochastic environment, where the decision
maker (agent) cannot fully observe the state of the environment. Decentralized
POMDPs (Dec-POMDPs) [9] generalize this to a multi-agent setting, where each
agent locally decides which action to take, and each agent receives local observa-
tions of the state. As such, Dec-POMDPs provide a way to model settings where
multiple agents cooperate to achieve a common goal, but where communication
is costly or lossy. Applications include multi-UAV search [16], wireless sensor
networks [15], bandwidth allocation [5], and maintenance problems [2].

The decision problem underlying solving Dec-POMDPs exactly or ϵ-optimally
over a finite horizon is NEXP-hard [1,13]. Nevertheless, in many practical cases it
is possible to exploit structure to do better than these complexity results suggest.
Concretely, in this thesis we present three algorithms building on multi-agent
A∗ (MAA∗) [14,10], an algorithm that finds policies by exploring a search tree.
The first algorithm, recursive small-step multi-agent A∗ (RS-MAA∗), is an ex-
act algorithm. The second algorithm, policy-finding multi-agent A∗ (PF-MAA∗),
is designed to find good policies for high horizons fast. The third algorithm, ter-
minal reward multi-agent A∗ (TR-MAA∗), aims to find upper bounds on the
optimal value for high horizons.

Our experiments show excellent performance of all three algorithms on a wide
range of standard benchmarks. We extend the horizon for which exact solving is
possible on all hard benchmarks1. In addition, PF-MAA∗ finds superior policies
for several benchmarks for high horizons, while TR-MAA∗ certifies the near-
optimality of these policies by finding close upper bounds.

Small-step multi-agent A∗. Classical multi-agent A∗ (MAA∗) [14] uses a search
tree whose outdegree is double exponential in the stage t. In particular, the
running time of classical MAA∗ is always double exponential in the horizon h.

Our first insight is that this double exponential outdegree can be avoided by
only fixing one action of one agent at once. This leads to a constant outdegree,
at the cost of increasing the height of the search tree from linear to exponential
in the horizon h. We call this novel search tree the small-step search tree, and
the corresponding algorithm small-step multi-agent A∗. Small-step MAA∗ is the
basis for all three of our algorithms.

⋆ Abstract of a MSc thesis supervised by Sebastian Junges and Nils Jansen. Parts of
the thesis were presented earlier at IJCAI 2023 [7] and IJCAI 2024 [8].

1 All benchmarks for which existing algorithms did not already scale to horizon 500.
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RS-MAA∗. Recursive small-step multi-agent A∗ (RS-MAA∗) is our exact al-
gorithm. Besides the small-step search tree, the main ingredient for RS-MAA∗

is the use of tight, recursive heuristics. In the context of A∗, heuristics should
overestimate the value of the best policy among a group of policies. Existing
heuristics in the literature [11] overestimate the value by assuming that agents
can use all joint observations or all but the last joint observation to decide how
to act, rather than only their own local observations. Instead, our new heuristics
correspond to revealing a small, fixed number of joint observations. We solve
the corresponding problem by recursively solving Dec-POMDPs with a smaller
horizon. To make this more scalable, we exploit the anytime nature of A∗ al-
gorithms, which allows for returning an upper bound on the heuristic value at
any point. In addition, we reuse lossless clustering [12], which allows grouping
together local observation histories without loss in policy value.

PF-MAA∗. Policy-finding multi-agent A∗ (PF-MAA∗) is our policy finding
algorithm. A challenge that PF-MAA∗ must address is that the size of policies,
when presented as functions of the local observation history, grows exponentially
with the horizon. To limit the size of the policies in our search space, we consider
policies that only use the last k local observations to decide how to act. Our first
contribution for PF-MAA∗ is the development of a lossless clustering of these
windows of k observations. Secondly, to limit the time spent searching, we only
expand the most promising partial policies, and prune other partial policies.
Thirdly, we introduce novel heuristics, designed to guide the search towards the
best policies. These heuristics use a precise estimate for the near future using a
low-horizon Dec-POMDP, but a rough estimate for the further future.

TR-MAA∗. Finally, terminal reward multi-agent A∗ (TR-MAA∗) is our algo-
rithm that finds upper bounds for high horizons. TR-MAA∗ also reuses lossless
clustering [12]. However, the recursive heuristics used by RS-MAA∗ are often too
expensive for high horizons (due to the curse of history). To make the heuristic
more scalable, we regularly reveal the true state of the Dec-POMDP.

Table 1. Empirical results
(time limit: 30 minutes, memory limit: 16GB).

Exact Policy value Upper bound
Setting (max. h) (h = 50) (h = 50)

Problem Ours lit. Ours lit. Ours MDP

DecTiger 12 6 81.0 80.7 101.3 1000
Grid 7 6 37.5 40.5 47.3 48.8
BoxPushing 5 4 1210 1201 1212 1306
Mars 9 4 125.8 128.9 132.4 145.0
Grid3x3 7 5 44.35 44.32 44.38 44.62

Experiments. Table 1 shows
some empirical results. The
first two columns show the
highest horizon that we can
solve exactly, compared to
best result in the literature
from GMAA∗-ICE [10]. The
next two columns show the
value of the best policy we
found, compared to the best
literature values found by
FB-HSVI [3] or GA-FSC [4].
The final two columns compare our upper bound to the MDP value, which is
the only bound available in the literature scaling to high horizons.
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