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Abstract. This study aims to investigate how human decision-making compares to fully
rational decision-making in concrete situations. In the second half of the twentieth century
it became more and more apparent that human decision-making is not entirely rational
[4]. On the other hand, this time period also witnessed the development of computational
systems able to reason rationally in limited domains.

In our study, human participants were asked to play a reasoning game and their reasoning
behaviour was recorded and compared to that of a fully rational, computational agent. In
84% of cases, participants' decision-making corresponded to the agent's. The other 16%
of decisions constituted deviations due to the use of (sub-optimal) heuristics or a failure
to observe all logical consequences of the game's rules. We interpret this as con�rmation
that humans are boundedly rational, as proposed by Simon in [16]. They generally act
rationally, but at times fail to process all necessary information for a rational decision, due
to computational constraints. By leaving the experimental setting open as much as possible,
we were able to observe which speci�c heuristics emerged, and propose explanations relating
them to the characteristics of the task environment.

Keywords: Knowledge representation and Reasoning · Logics and Normative systems · AI
and Social sciences · Bounded rationality · Wumpus World.

1 Introduction

As human beings, we are curious to know how we make decisions. This is not surprising; on many
occasions it can be useful to predict what decision another human being is going to make. It
is therefore not a coincidence that questions concerning the structure of human decision-making
play a role in almost every �eld of social science, whether it be economics, cognitive science or
psychology.

Traditionally, human beings are assumed to make those decisions that maximise their personal
satisfaction given all information available to them. We call this idea rationality [10]. For example,
when a person �nds two identical dresses d1 and d2 on di�erent websites where d1 costs ¤40,- and
d2 costs ¤41,- then, all other things being equal, they will prefer dress d1. Research has shown
that this economic view of human beings being rational is too simplistic. Humans commonly base
their decisions on other factors than what might be best given some optimisation criterion. In the
example, the person might consider their previous experiences with the two websites. A person's
environment, emotions and cognitive limitations are all sources of other than strictly rational
behaviour [10]. Another cause of other than rational behaviour is our inability to evoke all the
knowledge that is relevant for a task [17], preventing us from deriving the full implications of our
knowledge.

Part of the traditional view of human beings' decision-making is that we derive information
deductively, using general rules of inference. Already since the ancient Greeks, when Aristotle
published his Prior analytics, philosophers and mathematicians have tried to de�ne formal con-
cepts that capture the essence of valid reasoning, i.e. rules of what is necessarily true given some
knowledge. An example is the rule of modus ponens, which states that if it is true that if A then

B and it is true that A, then it is true that B, where A and B are sentences that can be true or
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false. For example, if it is true that �if you are a person, then you have a brain� and it is true that
�you are a person� then it is true that �you have a brain.�

As we sometimes seem to reason in this way, it might be tempting to assume we always do.
However, there is a large body of psychological research indicating that humans often fail to select
the right logical rule for reasoning tasks [3]. This suggests that human reasoning is at best only
partially deductively valid.

The upsurge of arti�cial intelligence in the twentieth century has provided us with new tools to
study how human decision-making compares to purely rational strategies. The computer systems
that have since been developed can solve many logical problems �awlessly, by always evoking the
right logical rules and applying them correctly. These systems make use of algorithms that can
prove all and only those sentences that are necessarily true given some knowledge. The proof that
these algorithms work was largely provided by logicians around the 1960s (see [14]). On top of
that, systems have been developed that can weigh actions perfectly, given a clear objective and
score function [14]. The result are systems that can perform rational decision-making.

In this study we hope to use some of these tools to shed light on how human decision-making
compares to a fully rational approach. We will compare the performance of human beings in a
game that requires logical reasoning to that of a computational logic-based agent.

The following sections provide a detailed description of the conducted research. In Section 2 we
will provide the necessary preliminaries on human and rational decision-making. Then, in Section
3 the research will be presented, including the research question and hypothesis. Subsequently,
the experimental setup is discussed in Section 4, followed by an analysis of the results in Section
5. Finally, in Section 6, we discuss the study's results and give suggestions for further research.

2 Preliminaries

This section provides preliminaries in human rational decision-making. Some preliminary knowl-
edge of these �elds is necessary to formulate our research question and hypothesis.

2.1 Human Decision-Making

In economics, rational action is understood as maximising one's satisfaction given one's (1) bud-
getary constraints and (2) preferences [10]. This would mean that in a fully observable environment,
human reasoners would take all relevant information into account when deciding on an action. In
this paper we will use the term all-information-rational to refer to this type of rationality. How-
ever, there is extensive literature on human decision-making strategies that are not in accord with
this model [3]. In some fully observable environments, humans seem to reason employing strate-
gies that ignore "part of the information, with the goal of making decisions more quickly, frugally,
and/or accurately than more complex methods" and are called heuristics [6, p. 454]. Two answers
have been proposed to the question why people employ heuristics. The �rst theory states that we
have limited memory and processing resources [8], which prevents us from considering every situ-
ation and action fully. This makes it rational to reduce the information used in a decision problem
by ignoring irrelevant information. The idea of �bounded rationality� proposed by Herbert Simon
attempts to conceptualise this point. It is the idea �that the choices people make are determined
(...) by the knowledge that decision makers do and don't have of the world, their ability or inabil-
ity to evoke that knowledge when it is relevant, to work out the consequences of their actions, to
conjure up possible courses of action, to cope with uncertainty (...) and to adjudicate among their
many competing wants� [17, p. 25]. Note that the �rst �ve of these limitations prevent humans
from fully analysing which decisions maximise their satisfaction and the last point limits the idea
that humans have clear and unambiguous preferences. This results in sub-optimal behaviour in
the mathematical sense.

An illustration of bounded rationality is provide by the Wason Selection Task (WST) exper-
iment [18], illustrated in Figure 1. This experiment has shown that human beings often fail to
grasp the full meaning of the sentence �if A then B�, a sentence which is crucial in the idea of
modus ponens (Section 1). The fact that participants in the WST recognise they have made a
mistake when it is pointed out to them [11], suggests that participants fail to evoke the appropriate
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logical rule for the task, even though they do know it. This results in a wrong judgement of the
consequences of their actions.

E G 4 8

Fig. 1: The Wason Selection Task (WST). Each card has a letter on one side and a number on the
other. Cards which have an E on one side must have a 4 on the other side. Which card(s) do you
need to turn over to check for errors? [5].

The second theory states that in environments that are dominated by uncertainty, it might be
rational to ignore information as a way to prevent over�tting one's predictive model of the results
of actions. The set of action-result experience a person can use to learn a action-result model is
often very small, resulting in a high risk that models results from actions �t on features that all
experiential samples accidentally share. These features are hence perceived to be pointing to a
certain result, even though in reality they do not. This can hurt predictive accuracy. Hence, in
these cases it might be rational to ignore features. This does, however, require the reasoner to
judge what type of environment they are reasoning about [6]. Hence, in this case mathematical
sub-optimality might result from a reasoner's wrong estimation of the type of environment it is
reasoning about. This would lead to an alternative explanation for people's trouble with the WST:
due to the fact that they see the numbers and the letters, they could misjudge the question to be
about mathematical equivalence rather than implication.

Gigerenzer and Gaissmaier discuss four classes of heuristics: "the �rst class exploits recognition
memory, the second relies on one good reason only (and ignores all other reasons), the third weights
all cues or alternatives equally, and the fourth relies on social information," [6, p. 459]. Exploiting
recognition in this case means relying on the theory that recognition is a di�erent cognitive process
than recollection, appearing earlier in consciousness.

Heuristics from the �rst class are of particular interest to the current study. The main heuristic
from the �rst class is the recognition heuristic. It prescribes: �if one of two alternatives is recognised
and the other is not, then infer that the recognised alternative has the higher value with respect
to the criterion� [6, p. 460]. Here, the recognition of alternative A refers to the match-up of A with
some piece of information already in one's memory [7]. Two speci�cations of this heuristic are the
�uency heuristic and the take-the-�rst heuristic. The �uency heuristic is applicable in situations
where �both alternatives are recognized� [6, p. 462] but one is recognised earlier than the other.
It prescribes: �If both alternatives are recognized but one is recognized faster, then infer that this
alternative has the higher value with respect to the criterion� [6, p. 462]. The take-the-�rst heuristic
presupposes a serial exploration of alternatives and prescribes: �Choose the �rst alternative that
comes to mind� [6, p. 462]. In the context of decision-making, applying this rule would result in
one action in a decision instance being recognised earlier than another and hence being selected.
Application of these heuristics from the recognition class is rational in an environment where the
probability of recognising one out of two alternatives is positively correlated with the probability
of the �rst being the better alternative.

It is important to note here that even though these rules of thumb may often lead you to
satisfactory outcomes, they do not ensure that you absolutely maximise your satisfaction in the
mathematical sense. Imagine, for example, the recognition heuristic in the context where you are
cooking dinner and realise you have not bought rice. In a hurry you run to the supermarket, where
you �nd two brands of rice, the one you always buy and a new one. You do not have time to look
at the price tags and hence you buy the familiar brand. It could well be the case that the rice you
did not buy was cheaper, so because you applied the recognition heuristic you have not maximised
your utility.
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2.2 Computational Decision-making

There exist arti�cially intelligent systems that, in fully observable domains, exhibit the all-information-
rationality associated with economic models, in particular by relying on logical formalisation and
complete search algorithms. Logic-based AI aims to use �logical techniques to formalize the rea-
soning problems that AI needs to solve� [12, para. 34]. Logic entails formally representing and
reasoning about information [14]. To formally represent knowledge means to de�ne (strict rules
for) the language you allow yourself to represent that knowledge in. This stands in contrast to
natural language, where the meaning of words is often ambiguous.

For this paper we look speci�cally at �rst-order logic, a formal representation devised to express
properties of and relations between objects. A �rst-order language is designed as a vocabulary
that contains �constant symbols, which stand for objects; predicate symbols, which stand for
relations; and function symbols, which stand for functions� [14, p. 275]. Predicates can also have
one argument, in which case they are referred to as properties. In addition to objects, relations
and functions, any �rst-order language also contains a logical vocabulary that expresses how the
truth of a certain sentence is related to the truth of its sub-sentences. Table 1 outlines the symbols
in this logical vocabulary and their semantics, along with the natural language expressions these
symbols express.

Symbol Meaning Semantics

¬ �not� ¬A is true i� A is not true
= �equals� (s = t) is true i� terms s and t refer to the same object
∧ �and� (A ∧B) is true i� A is true and B is true
∨ �or� (A ∨B) is true i� A is true or B is true
→ �if . . . then . . . � (A → B) is true i� in all cases where A is true, B is true
↔ �. . . if and only if . . . � (A ↔ B) is true i� A and B are both true or both false
∀ �for all x . . . holds� ∀xA is true i� A is true for all assignments to x
∃ �for some x . . . holds� ∃xA is true i� there is an assignment to x for which A is true

Table 1: An overview of the logical operators for �rst-order logic.

One of the earliest proponents of logic-based AI was John McCarthy in his article �Programs
With Common Sense� [9]. His idea was that a machine should be programmed such that it can be
�told� facts and rules about its environment in a formal manner and deduce the consequences of
this information for itself, something he denoted by the term �common sense� [9]. In the article,
McCarthy proposes a model, the Advice taker, as a general illustration of what a system imple-
menting this idea should look like. This program would, for example, be able to tell you what to
do if you are seated at your desk and wish to go to the airport [9]. In the `60s and `70s considerable
e�ort has been put into the objective to develop actual systems that can achieve this goal. These
systems are able to make all-information-rational decisions in observable domains.

To meet McCarthy's objective, systems should, apart from deriving logically necessary knowl-
edge, be able to weigh actions based on their knowledge and their desired goal. A way of realising
this is by using a search algorithm on the graph induced by such a planning problem, de�ned by
(a) an initial state, (b) a set of actions available to the agent in each state, (c) a description of how
each actions turns a given state into a resulting state, (d) a set of goal states that de�ne desired
results and (e) a path-cost function that assigns a numeric cost to each action [14]. A shortest
path to the goal state can then be found by breadth-�rst search from the initial state, by applying
all possible actions to the initial state and listing the resulting states. Then we do the same for
each of the resulting states, after �rst checking whether they are a goal state (Figure 2). If there
is a solution to the search problem, we are bound to �nd it if we search all states in the graph,
as the graph is an enumeration of all states (nodes) accessible from the start state by applying
actions (edges).

However, the �rst goal state the agent �nds should have the cheapest path, not the shortest.
This means we have to be selective about which state we choose to expand �rst. We achieve this
by using a best-�rst search algorithm, which we abbreviate as BFS in this paper. This algorithm
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selects the cheapest of all not expanded states to expand next (Figure 3). As the algorithm checks
a state to be a goal state when it is selected to be expanded, this ensures that the goal state with
the lowest cost will be found �rst [14]. Combining logical deduction and a BFS-algorithm in a
computer program produces an agent that always applies all relevant knowledge and is bound to
select the cheapest set of actions to acquire a desired outcome and therefore necessarily minimises
costs.

Fig. 2: Example of a search problem with two possible actions in each state. The grey node indicates
the state that will be expanded next. This node is checked to be a goal state and if it is not, its
successor states are generated by applying all possible actions [14].

5 1 5 1

3 6

5 1

3 6

5 7

Fig. 3: Example of a Best-First Search. Labels indicate the cost of the path towards each state.
States are expanded in a cheapest-�rst fashion.

3 Research

Given the above exposition, the question naturally arises to what extent there is correspondence
or deviation between human and all-information-rational problem-solving strategies in fully ob-
servable domains. More speci�cally, it is interesting to observe speci�c situations in which such
correspondence or di�erences arise. Therefore, our research seeks to compare human decision-
making to an all-information-rational strategy in a concrete situation. We aim to answer the
question: how does human decision-making compare to that of an all-information-rational agent

in a concrete decision-making environment? Based on the preliminary information we hypothesize
that human decision-making is mostly all-information-rational, but at times deviates from such a
strategy, due to humans' use of heuristics.

To test this hypothesis we require an agent to implement all-information-rational decision
making, human subjects, and a task environment that allows for an adequate and precise determi-
nation of the all-information-rationality of choices, while still being complicated enough to make
employment of heuristics either necessary or a possible strategical candidate. We have chosen to
implement the arti�cial agent in the programming language Prolog because it implements a de-
ductively valid reasoning method (resolution), as argued in Section 2. The task environment is an
adaption of Gregory Yub's Hunt the Wumpus game [19], to which we add action costs to allow for
the determination of all-information-rational decisions given the explicit objective of minimising
costs. In Section 4 we describe the experiment's setup, including the speci�cs of the game Hunt the
Wumpus, the Prolog agent, the human experiment and our predictions. We present and analyse
the results from our experiment in Section 5.
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4 Experimental setup

To test our hypothesis we designed and implemented a all-information-rational computational
agent and let it play (that is, reason about) three di�erent levels of the game Hunt the Wumpus

[19]. We have also let human participants play these levels and compared their performance to
that of the agent. The game is explained in section 4.1 and the design of the computational agent
in section 4.2. We describe how we set up the experiments with our human subjects in section 4.3
and make predictions of the outcomes in an attempt to falsify our hypothesis (section 4.4).

4.1 The Wumpus World

Both the human and the agents played several `levels' of our adaption of the game Hunt the

Wumpus that was created by Gregory Yub [19]. The game consists of a square grid of squares
(see Figure 4a), of which in the initial state only the bottom-left square (0, 0) can be observed by
the agent�at least this is the initial situation in Figure 4a, where (0, 0) is labeled �Start�. In our
experiments, for completeness' sake, the starting point was always the top-left square (0, 3) (see
Figure 7). The goal is to �nd a square containing the `gold' by navigating the grid, while avoiding
falling into `pits' and being eaten by the Wumpus, a monster lurking in the grid. The agent moves
by turning in the desired direction and going forward. In every square the agent may perceive
sensations that hint at a pit or the Wumpus being nearby, as follows. Whenever there is a pit in a
square (orthogonally) adjacent to the one the agent is on, the agent will perceive a breeze. When
the Wumpus is in an adjacent square the agent will perceive a stench in their own square (Figure
4). The agent also carries one arrow that kills the Wumpus if the agent turns in the direction of
the Wumpus and �res the arrow from any number of squares away.

In the version of the game we used for our experiment, actions have costs. Moving one square
costs 10 points and shooting the arrow costs 30 points. Finding the gold `costs' −1000 points and
both falling into a pit and being eaten by the Wumpus costs 1000 points. Turning does not have
associated costs. The goal is to �nish the level with as high a score as possible.

When completing the Wumpus task, it is highly advantageous to have the ability of logical
reasoning and cost-based planning. Information about the presence of a Wumpus or pit on a certain
square can in many cases be deduced from the sensations in previously visited squares. First-order
logic is particularly useful for this task since the quanti�ers (∀, ∃) enable us to formulate general
rules about the squares in the game in a concise manner, without having to address every square
individually. For example, we can formulate a rule like

∀s, r((Adjacent(r, s) ∧ Stench(r)) → PossiblyWumpus(s)),

to express that whenever we have observed a stench in a square r adjacent to some square s it
might be that case that there is a Wumpus on square s. Adjacency can similarly be de�ned in a
concise way.

4.2 Prolog Agent

The agent was constructed in Prolog, a logical programming language which can be thought of as
mimicking very closely the process of deductive reasoning, allowing for rules and facts to be stated
in �rst-order-like terms. Reasoning steps that the agent should take to successfully optimise its
behaviour can therefore be encoded in Prolog in a way that very closely resembles �rst-order logic
formulas. For example, one of the rules of the game is that if a square contains a pit, all adjacent
squares exhibit a breeze, or in other words (formulated as the contrapositive): a square contains
no pit if there is some square adjacent to it that contains no breeze. This rule can be expressed in
�rst-order logic as

∀s(∃q(Adjacent(q, s) ∧ ¬Breeze(q)) → agentKnowsNoPit(s)),

and then immediately in Prolog syntax as the following rule (which is slightly more elaborate to
�t in with the rest of our framework, where we need to register which squares have been visited).
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agentKnowsNoPit ([X,Y],Visited):-

setof([A,B],(

adjacent ([A,B],[X,Y]),

member ([A,B],Visited)

),Z),

atLeastOneNoBreeze(Z),

assert(agentKnowsNoPit ([X,Y])).

All the rules the agent needs, to successfully optimise its behaviour are encoded as Prolog code in
this way. We designed the agent to perform a best-�rst search (as described above), making use
of the information that is deducible from these rules, supplemented with some datastructures to
allow the BFS algorithm to work smoothly. The source code can be downloaded and studied at
https://www.whattodonext.nl/downloads.

Prolog deviates from standard �rst-order logic to make programming and execution faster.
Mainly, Prolog uses database semantics, which entails making three assumptions. The unique-
names assumption means that di�erent constants refer to di�erent objects. Domain closure means
that no objects exist in the domain than the ones identi�ed by the constants in the language. The
closed-world assumption states that atomic sentences that are not mentioned as true are false.

Execution of Prolog programs depends on (a variant of) the resolution method [13]. This
mechanism is sound, which means all sentences it can derive from a Prolog program are indeed
logical consequences of the knowledge in the program. It is also complete, which means that it can
be used to prove all sentences that follow logically from the program. The speci�c implementation
of the resolution mechanism in Prolog preserves the completeness entirely and the soundness

almost entirely [14].

The state of a�airs in a particular Wumpus World can also be encoded in a Prolog source �le.
We can encode where the Wumpus, the pits and the gold are located and we can construct rules
for the percepts that follow from this state of a�airs. See Figure 4 for an example.

0

0

1

1

2

2

3

3

(a) A con�guration of a Wum-
pus World (source: [14]).

% specific world setup

pit ([2 ,0]).

pit ([2 ,2]).

pit ([3 ,3]).

gold ([1 ,2]).

wumpus ([0 ,2]).

wall([X,Y]):- X < 0.

wall([X,Y]):- Y < 0.

wall([X,Y]):- X > 3.

wall([X,Y]):- Y > 3.

(b) The Prolog speci�cation of
this world.

%general rules for

every world

stench(S):-

adjacent(R,S),

wumpus(R).

breeze(S):-

adjacent(R,S),

pit(R).

glitter(S):-

gold(S).

bump(S):- wall(S).

(c) Prolog speci�cations for the
general dynamics of worlds.

Fig. 4: A con�guration of a Wumpus World due to Russell and Norvig [14] (left) along with its
speci�cation in Prolog (right).

Given a certain Wumpus world like the one in Figure 4, the agent can be told to �nd the
optimal strategy with the query play([0,0],Path,n). This in turn calls upon the bfs-predicate,
which searches for squares that (i) have not been visited yet and are known to be safe, (ii) are
sure to contain a Wumpus or (iii) are sure to contain gold. When such a square EndPos is found
the Path towards that square is returned. In case (i) and (iii) this will be a path consisting of only
moves, in case (ii) it will consist of moves and end with a shoot action. Then play is called again
but now with EndPos as starting point. This process continues until the agent reaches the square
which contains the gold, in which case play([0,0],Path,n) succeeds with Path, the path that is the
optimal strategy. If from some square all possible paths have been considered and none of these

https://www.whattodonext.nl/downloads
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reach a square that is safe and not visited, contains the Wumpus or contains the gold, the agent
returns �No solution found� followed by the path that has been assembled up to that point.

The agent also has a guess-mode. This can be activated by calling play([0,0],Path,y). The
process is identical to play([0,0],Path,n), except that when all options for a path have been
exhausted it does not return �No solution found� but goes into a new BFS called guessBfs. This
BFS allows squares that are not visited and possiblySafe to be added to its path. In this way
it `guesses' to go to a square that could be safe without knowing for sure that it is. When the
discovered square is indeed safe, play is called again with EndPos as its starting point. When the
agent winds up on a square with a pit or the Wumpus, the play-predicate returns �Game over�
followed by the path that has been assembled up to that point. When all options for the guessBfs

have been exhausted as well, the agent will return �No solution found� followed by the path that
has been assembled up to that point. The agent has been extensively tested on twenty 4×4 worlds
with randomly generated positions for the pits.

4.3 Human Experiment

Participants in the human experiment were asked to complete three con�gurations of the Wum-
pus World, increasing in logical complexity, and instructed to report their thought process while
playing.

Ethical Considerations Participation in this study was completely voluntary, each participant
explicitly providing informed consent. Participants' age and education level were recorded as well
as their voices. As these can reasonably be categorised as personal data according to the GDPR,
all video recordings were transferred to UU's 2FA secure OneDrive server and deleted from the
recording device. Furthermore, participants were informed that their consent could be retracted
and their data deleted at any time when requested.

Participants In total, 13 participants took part in this experiment. Most of them (9) were aged
between 20 and 26 years old, one aged 17, one aged 18, one aged 46 and one aged 48. Of these
participants, 12 enjoyed secondary education and are either enjoying or have enjoyed higher edu-
cation.

Fig. 5: Participants were seated behind a laptop during the experiment. The screen was �lmed and
their voices recorded as they performed the task and reported on their thought process.

Apparatus The experiments were conducted using laptops. 12 of the experiments were conducted
using a Dell Latitude E5470 laptop with Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz processor,
8.00 GB RAM and a 14 inch screen with 1366x768 resolution. The other experiment was performed
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on a laptop owned by the participant themself. The experiment can be accessed via https://www.
whattodonext.nl/wumpus. During the experiment the participants were asked to play the Wumpus
World game and instructed to report on their reasoning steps out loud. The screen was being �lmed
and their voice recorded. The �lming and recording was done using an iPhone SE with 12 MP
camera (Figure 5).

Design and procedure The participants took part in the experiment, sitting at a desk, behind a
laptop. A researcher was present during the procedure to monitor whether the explication of the
participant's thought process was explicit enough and to repeat the rules of the game in case
the participant had forgotten one. The experiment started with a welcome screen (see Figure 6).
The participant could click a link when they had read the welcome message. Then, on the next
screen, the participant could read the instructions to the game. Then they all received an identical
small demonstration of how one navigates through the world in a practice level. After that, the
participant was free to try their hand at it themselves, still in the practice level. Then, when
the participant either found the gold or was game over, they could click on to the next screen.
This screen announced that the real levels were about to start. By clicking a link again the real
levels started. This is also the moment the supervisor started the video and audio recording. The
participants played three levels after which they were redirected to the thank you screen.

The worlds were deliberately constructed in such a way that for each new level the complexity
of reasoning required to solve it increases. In all levels it is necessary to identify which paths
were cheapest. Then, for world 1 (Figure 7a) it su�ces to use one logical rule to solve it: the
rule �if a square is empty then all adjacent squares are safe�. For world 2 (Figure 7b) there are
two necessary rules: �if a square is empty then all adjacent squares are safe� and �when a square
has a stench and all adjacent squares are safe except some square [X,Y] then [X,Y] contains the
Wumpus�. It also requires the insight that shooting the Wumpus when there are no safe squares
to be visited is one's only sure chance to visit a new square. World 3 (Figure 7c) requires the
participant to identify that no surely safe actions can be made and hence has to identify which
squares are possibly safe using the rule �if the perceptions in some square [X,Y] can be explained
by other adjacent squares than some adjacent square [A,B], then [A,B] is possibly safe�. For some
game-plays, the participant should also be able to deduce that if there is some square [X,Y] for
which some adjacent square [A,B] does not contain a stench and some adjacent square [C,D] does
not contain a breeze then square [X,Y] is safe.

Welcome InstructionWelcome

Demon-
stration/
practice 

level

Announ-
cement 

real levels
Worlds 1-3 Thank you

Fig. 6: The setup of the experiments.

Analyses The audiovisual data of the experiment have been coded (see for example [1]) in order
to compare them to the performance of the computational agent in a history-independent matter.
This was necessary because the order in which the computational agent happens to select actions
may exclude all-information-rational strategies that participants might have selected. Firstly, the
participants' reports were transcribed. Then, based on the transcripts as well as the video data,

https://www.whattodonext.nl/wumpus
https://www.whattodonext.nl/wumpus
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Fig. 7: A schematic representation of the experiment's levels. The agent is represented by the letter
`A', breezes by the letter `b' and stenches by the letter `s'.

they were freely coded, indicating inference rules applied by the participants. After that codes
were standardised to prevent pieces with the same meaning being indicated by di�erent words.

For example, participant 8's utterance �Geen beginwaarschuwing dus ik ga rondlopen,� [En-
glish: �No start warnings so I will walk around�] was coded with the code NPNS, meaning: �If
this square shows no percepts then all adjacent squares are safe.� Another example is participant
9's utterance �Dus dat betekent dat de Wumpus onder het stench vakje zit, dus die kunnen we
dan schieten,� [English: �So that means the Wumpus is under the stench square, so we can shoot
it,�] which was initially coded with the code Weet W → schieten [English: Knows W →
shoot] which was after the standisation step replaced byW → S meaning �If you know where the
Wumpus is, you shoot it.� An exampe of a coded transcript can be found in the Supplementary
Information (SI) Figure 1 and a list of all standardized codes can be found in SI Figure 2.

Then, codes were grouped in higher-level groups of meaning corresponding to the all-information-
rationality of the rule applied. Rules could be either rational, irrational, conditionally rational or
neither rational nor irrational. �Rational� hence be understood as all-information-rational in this
context. For example, the rule indicated by the code NPNS from the above example is all-
information-rational, since this rule follows logically from the rules of the game and the code W
→ S is conditionally all-information-rational, since it is only all-information-rational when there
are no squares left that are known to be safe and cost less to reach than it costs to shoot your
arrow. Observe that to determine whether the condition for all-information-rationality is met here,
the researcher must have access to the current state of the game via the video material. Irrational
rules are those that are (i) deductively invalid given the rules of the game or (ii) not cost-e�cient.
An example of case (i) is concluding from observing a breeze that all adjacent square must con-
tain a pit (code BAAP) and an example of case (ii) is choosing a systematic approach over
cost-e�ciency (code O>C). Neither rational nor irrational rules are those that were sometimes
applied to decide between equally all-information-rational choices. For example, when a partici-
pant would start level 2 going down from the initial square because they went right in level 1 (an
example of the rule with the code explore, in contrast to the code exploit). The full grouping
can be found in SI Figure 3.

Finally the participants' optimal and sub-optimal decisions were counted. In this �nal step, op-
timal was taken to mean following rules classi�ed as rational or as conditionally rational provided

the condition is met. In the case of sub-optimal choices it was also recorded which code corre-
sponded with their reason for that choice. The full counting of optimal and suboptimal choices
can be found in SI Figure 4.

4.4 Predictions

Our hypothesis is that human strategies are `more than 50% all-information-rational' but, because
they apply heuristics, will deviate from those of a all-information-rational strategy more than 0%
of the time. Therefore, we expect that in more than half of the cases, participants would select

https://whattodonext.nl/supplementary-materials.pdf
https://whattodonext.nl/supplementary-materials.pdf
https://whattodonext.nl/supplementary-materials.pdf
https://whattodonext.nl/supplementary-materials.pdf
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action paths that corresponded to the agent's strategy. In the other cases we expect participants
to select actions paths that are not as cost-e�cient as possible. We expect sub-optimal decisions
to stem from a disregard of some logical rule for the situation or a disregard of some cheaper
possibility.

5 Results Analysis

The humans participants' and the agent's strategies were mostly similar. They deduced, from the
rules of the game, which squares were necessarily safe. Then they considered which squares were
easiest to reach by the fewest steps. They often made use of the rules �if a square contains a breeze
and three surrounding squares are known not to contain a pit then the remaining adjacent square
contains a pit� (SI Figure 2: PBS) and �if a square contains a stench and three surrounding squares
are known not to contain the Wumpus then the remaining adjacent square contains the Wumpus�
(SI Figure 2: WSS) to determine the location of pits or the Wumpus. This resulted in an average
of 86% choices in correspondence to the agent's in level 1, 81% in level 2 and 86% in level 3.

Interestingly, participants even used methods that were di�erent from the agent's. By that
we mean all-information-rational strategies that follow from the rules of the game. For example,
participants used the fact that if they perceived a percept in a square, at least one of the adjacent
squares had to contain the corresponding danger. They remembered this set of squares. Then,
in next stages, by excluding options that became impossible, they eliminated elements of the set
until only one was left. Then, they deduced that square should contain the danger. This is an
equally fruitful strategy as the one the agent applies, since the moment all but one possibility
have been excluded by resolution is exactly the moment when the agent can deduce where the
danger is by rule PBS or WSS (Figure 8). However, the way the information is stored in memory
and the temporal distribution of the calculation is di�erent.

b
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A,s
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3

0 1 2 3

b

(a) Initialisation of resolution reasoning.

b

b

A,s s

0

1

2

3

0 1 2 3

b

(b) Moment of �nal conclusion.

Fig. 8: Schematic illustration of a participant applying resolution. Shaded squares are still un-
known. In situation 8a the participant remarked: �This square has a stench [(1,1)] (...) so this
square [(0,1)] or this square [(1,0)] is the �eld's only Wumpus.� After proceeding and ending up
in situation 8b they remarked: �This is the Wumpus [(1,0)].� Note that it is equally fruitful to use
WSS in the second instance to deduce that the Wumpus is on square (1,0).

Nevertheless, participants also made choices that were not in accord with the agent's. This
could be explained by the employment of heuristics. In particular the rules �if there is no breeze
on some square then all adjacent squares do not contain a pit� (NPNB) and �if there is no stench
on some square then all adjacent squares do not contain the Wumpus� (NWNS) were not applied,
constituting 25% of sub-optimal decisions. It is not surprising that participants failed to observe
these rules, which are contra-positives of the quanti�ed rules of the game as presented to the
participants. This is exactly in accordance with the evidence found in the Wason Selection Task
[18].

https://whattodonext.nl/supplementary-materials.pdf
https://whattodonext.nl/supplementary-materials.pdf
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The other big cause of deviation was that participants not always made choices with the
lowest cost (23%). The Wumpus game is an environment where recognising a strategy from before
is not highly correlated with it being the cost-minimising strategy as each level requires a di�erent
reasoning rule. Hence, particpants' failure to consistently perform cost-minimising actions might
be attributed to the take the �rst heuristic: actions that resulted in the discovery of safe squares
before might be recognised �rst even though in a new level minimising costs might require a new
action.

Other causes of deviation from the agent's strategy were:

1. Participants tended to shoot the Wumpus as soon as they knew where it was.
2. Some participants tended to infer from the breezes the minimal number of pits that could

explain them and then (often incorrectly) considered all other squares to be safe (Figure 9).
3. Some participants expressed the desire to maintain overview by working in a structured man-

ner. This structured approach caused them to take extra steps. For example, they would go
from left to right, then completely back to the left, then down, then to the right again, etc.

The tendency to shoot the Wumpus as soon as it has been discovered can also be explained
by the take-the-�rst heuristic. Since in most video games it is always desirable to kill an opponent
when one gets the chance, it is likely that the action of shooting the Wumpus is recognised earlier
than the alternative action of moving, resulting in the choice to shoot the Wumpus, even though
moving away instead might have been the cost-minimising strategy. The tendency to approach a
problem in a structured way, on the other hand, could be accredited to the recognition heuristic [6].
In most puzzle-games it is wise (and at zero cost) to choose actions that preserve one's overview
of the problem. Hence, recognising the option of a structured action earlier than more haphazard
alternatives might result in those actions being applied.

b

A,b

b s

0

1

2

3

0 1 2 3

Fig. 9: In this situation participant 5 remarked: �That's a pit, up there [(3,3)] (...) Then I can
probably go down here.�

Interestingly, the tendency to shoot the Wumpus pre-emptively was also observed in one of the
two participants over 40. As these individuals may not have been raised with computer games,
a di�erent explanation might be required. An alternative explanation could be that pre-emptive
shooting of the Wumpus comes from a desire to minimise the amount of information that has to be
memorised. Conscious of their own limited memory capacity, the participants shoot the Wumpus.
Then, at least, they do not have to remember where they had deduced the Wumpus to be.

As for comparison among levels, the majority of sub-optimal decisions in level one were due
to the pre-emptive shooting of the Wumpus, while in level two and three the majority of mistakes
was made due to a mix of uncommon mistakes. It seems that whenever participants were not
sure what to do they just acted randomly, thinking up a reason later. This could be a sign of
rationalisation. Cushman [2, p. 1] writes that �rationalization occurs when a person has performed
an action and then concocts the beliefs and desires that would have made it rational.�

The prevalence of pre-emptive shooting of the Wumpus in level one could be explained by the
fact that it is not hard to deduce where the Wumpus is in that level. It is only necessary that
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a participant starts exploring in a downwards fashion to �nd the Wumpus' location in relatively
few steps. In world two and three, �nding the Wumpus is considerably harder. Moreover, in world
two, in most cases, it is an optimal move to shoot the Wumpus whenever you have derived where
it is. For level three it rarely happened that participants found the Wumpus, because it is in the
lower right corner. Most participants would not even reach that corner because they would die or
�nd the gold earlier.

6 Discussion

Our results answer our research question How does human decision-making compare to that of

an all-information-rational agent in a concrete decision-making environment? by con�rming our
hypothesis that human decision-making mostly corresponds to that of a all-information-rational
agent, but that, at times, it deviates. We have seen that an all-information-rational computational
agent does not face computational limitations in our versions of the Wumpus World. It tackles
the Wumpus World by calculating which game states can be accessed via the current game state
and what the associated costs are. In this way it searches for the cheapest path resulting in more
information and does not risk to go Game Over, except for when such a risk is absolutely necessary.
By implementing a best-�rst search and logical deduction in this way the agent always �nds the
optimal decision.

Human beings largely adopt the same strategy, but at times do not work out all possibilities
the computational agent does. They do not consider all possibilities, either because they cannot
hold everything in their memory at once, fail to deduce relevant information that logically follows
from the game state and rules of the game or wrongfully judge the environment to be one where
employing heuristics is rational. Speci�cally contrapositive reasoning seems hard for people, which
is in line with the �ndings of the Wason Selection Task [18]. Both these causes are computational in
nature, supporting the idea of human rationality being �bounded� by computational constraints
[17]. To overcome these limitations humans use heuristics, but these sometimes result in sub-
optimal behaviour as well.

This research's strength lies in it's `ecological' approach to human heuristic reasoning. Rather
than investigating a speci�c heuristic, we have focused on creating an environment in which the
desire to act rationally coupled with computational constraints gives rise to heuristics that were
not prede�ned by the researchers. Hence, this study has given us the opportunity to study how
and where heuristics arise in a concrete environment.

On the other hand, this focus on ecology rather than experimentation makes result analysis
harder. We have not obtained numerical results, but rather spoken reports and video material that
requires interpretation. Hence, the research's analysis cannot be seen as fully separate from the
researchers' own ideas about rationality. Let this research's analysis then partially be understood
as engaging in the ongoing discussion about how we should understand the concept of rationality.

Another limitation of this study is that we, as the writers of the source code for the agent, had
to judge whether the participants acted in accordance with it. The question thus arises whether
the agent then was necessary in the �rst place. The answer to this question is yes and for two
reasons. Firstly, by building the agent we have sharpened our vision on what all-information-
rational choices are in the Wumpus World. We encountered many edge cases where we were
forced to think about what the all-information-rational strategy was at that point, without having
thought of it ourselves beforehand. We are sure that we would not have been able to analyse the
participants' performance had we not written the agent �rst. (Note that this is a sign of our own
computational limitations.)

Secondly we would argue that judging the performance of the participants' according to our
knowledge of what the agent would do, is not any di�erent from having a computational agent
do it. That is, we have not at every stage of the game asked ourselves whether the decision
the participant made was the all-information-rational action. We simply considered whether the
participant's action was in accordance with the rules of the program. One could say that in this
way we have become a computational agent ourselves. We are not alone in this thought. Consider
John Searle's Chinese Room argument, where he argues that computers can have no consciousness
if they simply follow rules without knowing what these rules mean [15]. In following the rules of
the program, we have in a way become such a computer.
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Lastly, this study would have bene�tted from a more diverse group of participants. Unfor-
tunately, time and resource constraints did not allow us to look far for participants. Hence, the
participants are mostly students or have enjoyed higher education.

All taken together, the results of this study support an idea of human rationality as heuristic
and bounded by computational constraints. When compared to a all-information-rational compu-
tational agent, human subjects perform mostly in accordance with it, but at times fail to do so.
We hope this study can serve as an example of how arti�cial intelligence can be employed to study
human decision-making. By comparing human behaviour to a computational agent's, we can gain
insight into how human beings reason in a concrete problem-solving environment. Further research
in this area might be directed at human decision-making in other games to enable us to �lter which
human decision patterns are game-independent. Conversely, the outcomes of studies like this can
help improve AI-systems that interact with human beings, like self-driving cars and care robots.
In this way we can help ourselves, and AI-systems, to better understand how we think.
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