
Weather Data Imputation Using Graph-Based
Low-Rank Matrix Completion with Variable

Projection⋆

Benoît Loucheur1[0000−0001−6260−2750], P.-A. Absil1[0000−0003−2946−4178], and
Michel Journée2

1 ICTEAM Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
{benoit.loucheur,pa.absil}@uclouvain.be

2 Department of Climatology, Royal Meteorological Institute, Uccle, Belgium

Abstract. We address the low-rank matrix completion problem by in-
corporating graph regularization into the existing Riemannian Trust-
Region Matrix Completion (RTRMC) framework. The latter uses the
geometry of the low-rank constraint to remodel the problem as an un-
constrained optimization problem on a single Grassmann manifold. Our
approach, named Graph-Regularized RTRMC (GR-RTRMC), exploits
the matrix’s inherent relationships between rows and columns. By using
these relationships, we aim to improve the accuracy and robustness of
matrix completion, particularly in scenarios where the underlying data
exhibits strong correlations between rows or columns.

Keywords: Low Rank · Matrix Completion · Weather data imputa-
tion. · Graph-Based.

1 Introduction

Matrix completion is a fundamental problem in machine learning with numerous
applications in collaborative filtering [20,26], image processing [23,25], system
identification [21], bioinformatics [12] and network analysis [35,37]. The primary
goal of matrix completion is to recover a low-rank matrix from a small subset
of its entries. This problem has received considerable attention recently due to
the inherent challenges of high-dimensional, noisy, and incomplete data. Further-
more, matrix completion gained widespread recognition and popularity following
its pivotal role in the Netflix Prize challenge [3], where the task was to predict
user ratings for movies based on a partially observed user-movie rating matrix.

One popular approach to matrix completion is based on minimizing the nu-
clear norm, which promotes low-rank solutions by using the sum of singular
values as a convex surrogate for rank. The optimization problem can be solved
by convex optimization methods as in [10], but those methods do not scale well
with the dimensions of the matrix.
⋆ Funding: This work was supported by the Fonds de la Recherche Scientifique-FNRS

under Grant no T.0001.23.
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To overcome these limitations, methods that impose a rank constraint have
been proposed (see [27, §II.B] for a survey), among which the Riemannian
Trust-Region Matrix Completion (RTRMC) [5,6] was introduced as an alter-
native approach, which employs Riemannian optimization techniques to solve
the non-convex matrix completion problem. RTRMC has demonstrated strong
performance in various scenarios, including large-scale and noisy problems, in
particular when the matrix is very rectangular instead of square.

In the standard matrix completion problem, such as RTRMC, rows and
columns are assumed to be randomly organized. In many real-world matrix com-
pletion problems, side information on similarities between columns or rows is
available. For example, in the Netflix problem, users of the same age, gender,
hobbies, or education may have similar tastes in movies. Similarly, movies that
belong to the same genre, release year, feature similar actors, or originate from
the same country may be preferred by the same group of users. This information
can be used to improve the accuracy of recommendation systems.

Graphs can encode these relationships between users (i.e., rows) and movies
(i.e., columns) in the matrix representation to take advantage of these correla-
tions. A matrix completion model on graphs aims to find a low-rank matrix that
fits the observed entries while complying with the graph-encoded similarities
between columns and between rows.

This paper proposes a novel approach called Graph-Regularized RTRMC
(GR-RTRMC) that integrates graph regularization into the existing RTRMC
framework. Our method leverages the side information between the rows and
columns of the matrix to enhance the recovery of low-rank structures. By ex-
ploiting these relationships, we aim to improve the accuracy and robustness of
matrix completion, particularly in scenarios where the underlying data exhibits
strong correlations between rows or columns.

The development of this graph-regularized version of RTRMC was moti-
vated by gap-filling experiments for weather data [22] where an existing graph-
regularized matrix completion method, as well as the basic RTRMC, were ob-
served to perform well. The purpose of this preliminary paper is to briefly intro-
duce the novel GR-RTRMC and report weather-data gap-filling experiments in-
dicating that, in various scenarios, the new method significantly outperforms the
basic RTRMC and other state-of-the-art matrix completion methods. A more in-
depth presentation of the underpinnings of the new method, as well as a broader
tests on synthetic and real data, will be presented in further work.

2 Related works

Throughout the paper, we use several matrix norms: nuclear norm ‖ · ‖∗, Frobe-
nius norm ‖ · ‖F, spectral norm ‖ · ‖2 and Dirichlet semi-norm ‖ · ‖D.

Given a matrix M ∈ Rm×n, matrix completion aims to recover all its entries
from a partially observed fraction of them. The set of observed entries of M is
denoted by Ω = {(i, j) : Mij is observed}. The projection PΩ [11] with respect
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to a set of matrix indices Ω is the function PΩ : Rm×n → Rm×n defined by:

[PΩ(M)]ij = [MΩ]i,j =

{
Mij if (i, j) ∈ Ω,

0 otherwise.

2.1 Convex Models

Given the projection operator PΩ, the low-rank matrix completion problem can
be formulated as an optimization problem:

min
X∈Rm×n

rank(X) s.t. PΩ(X) = PΩ(M). (1)

However, this optimization problem is NP-hard [11] due to the non-convexity of
the rank function. It has been proven [15] that the nuclear norm is the convex
envelope of the rank function. Substituting the rank function with the nuclear
norm [11] gives the following optimization problem:

min
X∈Rm×n

‖X‖∗ s.t. PΩ(X) = PΩ(M), (2)

where ‖X‖∗ is the nuclear norm, which equals the sum of all singular values of
X. The unconstrained version of (2) is solved in the literature [31]:

min
X∈Rm×n

‖PΩ(X)− PΩ(M)‖2F + λ ‖X‖∗ , (3)

where λ > 0 is a regularization parameter. In the matrix completions prob-
lems (3), the computation of the singular value decomposition (SVD) is per-
formed at every iteration. This process significantly contributes to the time con-
sumption, especially for large matrices.

2.2 Factorized Models

To overcome this issue, several methods use the factorization X = UW with
U ∈ Rm×r and W ∈ Rr×n, thereby enforcing the constraint rank(X) ≤ r. In
particular, LMaFit [34] considers the optimization problem:

min
U∈Rm×r

W∈Rr×n

Z∈Rm×n

‖UW − Z‖2F s.t. PΩ(Z) = PΩ(M). (4)

LMaFit does not globally converge to the optimal solution due to the non-
convexity of the objective function. However, it has been proven [34] that the
method converges to a stationary point. Alternating minimization for matrix
completion (AltMinComplete) [18] is a variant of LMaFit where the constraint
is incorporated in the objective function:

min
U∈Rm×r

W∈Rr×n

‖PΩ(UW )− PΩ(M)‖2F . (5)
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The AltMinComplete optimization problem can then be improved by adding
two regularization terms, i.e., the Frobenius norm of the matrices U and W [8],
yielding

min
U∈Rm×r

W∈Rr×n

‖PΩ(UW )− PΩ(M)‖2F + λ ‖U‖2F + λ ‖W‖2F ,

where λ > 0 is a regularization parameter.
The formulations (3) and (6) are closely related; it is possible to link them

using the variational definition of the nuclear norm [29,24]:

‖X‖∗ = min
U∈Rm×r

W∈Rr×n

1

2

(
‖U‖2F + ‖W‖2F

)
s.t. X = UW.

(6)

This new formulation (6) is the standard form of the factorized low-rank matrix
completion [8].

2.3 Matrix completion by variable projection

In view of the identity UW = UC C−1W for all invertible r × r matrices C,
there is no loss of generality in restricting U to belong to the Stiefel manifold
St(m, r) = {U ∈ Rm×r : U⊤U = Ir}. Furthermore, problem (5) can be addressed
by variable projection (see [33] for an overview of the literature), yielding

min
U∈St(m,r)

(
min

W∈Rr×n
‖PΩ(UW )− PΩ(X)‖2F

)
, (7)

where the inner optimization problem in W is a linear least squares problem.
Given the above-mentioned matrix identity, the value of the inner problem de-
pends only on col(U), the column space of U . As pointed out in [13], (7) can thus
be phrased as an optimization problem on Gr(m, r), the Grassmann manifold of
r-dimensional subspaces in Rm:

min
U∈Gr(m,r)

(
min

W∈Rr×n
‖PΩ(UW )− PΩ(X)‖2F

)
, (8)

where U ∈ Rm×r is any matrix such that col(U) = U .
The Riemannian Trust-Region Matrix Completion (RTRMC) of [5] addresses

a weighted and regularized extension of the problem, namely

min
U∈Gr(m×r)

(
min

W∈Rr×n

1

2
‖C � (UW −M)‖2Ω +

λ2

2
‖PΩ̄(UW )‖2F

)
, (9)

where Ω̄ is the complement of the set Ω, U ∈ Rm×r is any matrix such that
col(U) = U , and

‖M‖2Ω =
∑

(i,j)∈Ω

M2
i,j .
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The confidence index Ci,j > 0 is introduced for each observation in Ω. This new
formulation also enforces smoothness by considering the unobserved entries into
the regularization term. A Riemannian trust-region method, GenRTR [1], was
used to solve the above optimization problem on the Grasmannian. RTRMC
outperforms [6] other state-of-the-art algorithms on a wide range of problem
instances. It is especially efficient for rectangular matrices.

2.4 Graph-based models

It may be helpful to add to the objective function a graph regularization term
that contains similarity information between the rows or the columns of the data
matrix M .

We model the row index set of M with a graph Gu = (Vu, Eu, Eu), where Vu

is the set of nodes, Eu is the set of (undirected) edges Eu ⊂ Vu × Vu and Eu

encodes the edge weights Eu ∈ R|Vu|×|Vu|. In addition, we consider the adjacency
matrices with non-negative values:

Eu
i,j = Eu

j,i

{
> 0 if (i, j) ∈ Eu,

= 0 otherwise.
(10)

To take into account the graph information in the optimization problem, we will
use the following smoothing term [2]:

1

2

∑
(i,j)

Eu
i,j ‖ui − uj‖22 = Tr(U⊤LuU) = ‖U‖2D,u , (11)

where Lu := Du − Eu is the graph Laplacian of Gu, Du is the diagonal degree
matrix Du

i,i =
∑

j∼i E
u
i,j . The left-hand side term of (11) favors a similarity

between the rows ui and uj of U whenever Eu
i,j is large.

Similarly, the graph that models the column index set of M is denoted as
Gw = (Vw, Ew, Ew). We get a corresponding expression Tr(WLwW

⊤) = ‖W‖D,w,
with the Laplacian Lw of the columns graph Gw.

Adding these two new regularization terms to the formulation (6) leads to
the graph-regularized matrix completion problem [19]:

min
U∈Rm×r

W∈Rr×n

1

2
‖PΩ(UW )− PΩ(M)‖22 +

λu

2
‖U‖2F +

λw

2
‖W‖2F

+
λL

2
‖U‖2D,u +

λL

2
‖W‖2D,w .

(12)

The above formulation was addressed through the introduction of GRALS (Graph-
Regularized Alternating Least Square) [28], a method which applies the conju-
gate gradient method alternately to U and W .
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3 Graph-Regularized Riemannian Trust-Region Matrix
Completion (GR-RTRMC)

We propose a novel approach called Graph-Regularized Riemannian Trust-Region
Matrix Completion (GR-RTRMC), which extends the Riemannian Trust-Region
Matrix Completion (RTRMC) method by incorporating graph regularization
terms. This method aims to leverage the geometric structure of the low-rank
matrix manifold and the relational information encoded in graph representa-
tions of the data. The proposed minimization problem that GR-RTRMC aims
to solve is the following:

min
U∈Gr(m,r)

(
min

W∈Rr×n

1

2
‖C � (UW −M)‖2Ω +

λ2

2
‖PΩ̄(UW )‖2F

+
λu

2
‖U‖2D,u +

λw

2
‖W‖2D,w

)
,

(13)

where U ∈ Gr(m, r) is a point on the Grassmann manifold, W ∈ Rr×n is the
second factor of the low-rank approximation, C contains confidence weights for
observed entries, and λ, λu, λw are regularization parameters.

To solve a problem in the form

min
x∈M

f(x),

where M is a smooth Riemannian manifold (for GR-RTRMC: M = Gr(m, r))
and where f is smooth, there exist many different Riemannian optimization
algorithms, available in toolboxes such as Manopt [7,32,4] and ROPTLIB [17].

For a fixed U , finding the matrix W that minimizes (13) becomes a least-
squares problem and the mapping between U and this optimal W , noted WU , is
defined by

WU = argmin
W

h(U,W ), (14)

where h(U,W ) is defined as:

h(U,W ) =
1

2
‖C � (UW −M)‖2Ω+

λ2

2
‖PΩ̄(UW )‖2F+

λu

2
‖U‖2D,u+

λw

2
‖W‖2D,w .

To compute the next U iterate, we use the Riemannian Trust-Region (RTR),
which requires the Riemannian gradient and Hessian.

In order to apply the RTR algorithm to minimize f , we need an expression
of its gradient and Hessian. This requires an extension of the development of [6,
§3] to deal with the two graph-related terms.

The GR-RTRMC algorithm is available from https://github.com/bloucheur/
BNAIC-2024. The technical intricacies, notably the computation of the gradient
and Hessian of f , will be presented in detail elsewhere.

In a nutshell, we obtain as a Riemannian gradient:

https://github.com/bloucheur/BNAIC-2024
https://github.com/bloucheur/BNAIC-2024
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grad f(U) = (I −UU⊤)

{[
(C(2) −Λ(2))� (UWU −MΩ)−λ2MΩ

]
W⊤

U +λ2
uLuU

}
,

(15)
where Λ ∈ Rm×n is defined as:

Λij =

{
λ if (i, j) ∈ Ω,

0 otherwise.

The Riemannian Hessian is as follows:

Hess f(U)[H] = (I − UU⊤)

{[
(C(2) − Λ(2))� (HWU + UWU,H)

]
W⊤

U

+ λ2
uLuH − λ2

uHU⊤LuU

}
+RUW

⊤
U,H

+ λ2H(WUW
⊤
U) + λ2U(WUW

⊤
U,H),

(16)

where RU = (C(2) − Λ(2)) � (UWU − MΩ) − λ2MΩ. The computation of the
Hessian require WU,H , the differential of the mapping U 7→ WU along H.

4 Numerical Experiments

We evaluate the performance of the proposed algorithms for solving the graph-
regularized matrix completion problem. This study utilizes data provided by
the Royal Meteorological Institute of Belgium (RMI), including air tempera-
ture measurements from a network of 93 automatic weather stations distributed
throughout Belgium, with their locations depicted in 1. These stations recorded
data at 10-minute intervals. The analysis covers the period from January 1, 2020,
to December 31, 2023.

All experiments are performed on a desktop with 4.5 GHz AMD Ryzen 9
7950X with 64GB of RAM running Julia 1.10.4. The source code is available
at https://github.com/bloucheur/BNAIC-2024. Implementations of the ex-
isting algorithms are also publicly available. However, the dataset we use is con-
fidential. An open-source dataset containing similar meteorological data from
weather stations in France is available at https://meteonet.umr-cnrm.fr.

In each experiment, the data consists of a partially-observed station-by-time
matrix M , whose entry Mij is the temperature measured in station i at time j.

Methodology for graph construction Spatial Graph. The first graph to
be constructed is the graph of the rows of M , i.e., the spatial graph. Each row of
M represents a unique weather station and, therefore, a node in the graph Gu.

In our experiments, we construct four different types of graphs. The first is
built using a K-nearest neighbor (KNN) approach, shown in Figure 2a. We use
spatial distance (i.e., haversine distance) as the distance between two stations.

https://github.com/bloucheur/BNAIC-2024
https://meteonet.umr-cnrm.fr
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Fig. 1: Position of the 93 weather stations in Belgium

The hyperperameter K is adjusted in the cross-validation stage. However, this
graph is unweighted, leading to the second formulation of the graph shown in Fig-
ure 2b. This time, the edges are weighted by the inverse of the spatial distance.
Thus, the closer the stations are, the more strongly they are connected. The third
approach adds a spatial consistency constraint to the previous approach. It is
well known that the temperature at a given point is influenced by its altitude.
Figure 2c is a weighted KNN with an additional constraint that prevents two
stations from being connected if the difference in altitude is greater than 100m.
This value was chosen once and for all through a cross-validation experiment.
This constraint avoids the case where two stations are spatially very close, but
at very different altitudes. This situation arises in the south of Belgium, where
the relief is more hilly than in the flat north. A comparison of Figure 2b and Fig-
ure 2c clearly shows the disconnection of edges in the lower part of Belgium. Note
that in the three approaches presented above, the construction of the graphs is
independent of the data. They are built using longitude, latitude, and altitude
metadata only.

The fourth approach uses meteorological data to build the graph via hierar-
chical clustering. Defining a measure of distance between two series is necessary
to achieve this clustering. The Euclidean distance falls short of capturing delays
that may occur between weather stations due, e.g., to a line of thunderstorms
that reaches the stations at different times. For this reason, we use the Dynamic
Time Warping (DTW) [30] metric. DTW is a technique to measure the similar-
ity between two time series X = (x1, x2, · · · , xn) and Y = (y1, y2, · · · , yn). It
computes the optimal match between these two series by allowing stretching or
compressing of the time axis. The DTW distance is calculated by creating an
n × n matrix D where D[i, j] represents the distance between xi and yj . Then,
the matrix is updated with the following formula:

D[i, j] += min (D[i− 1, j], D[i, j − 1], D[i− 1, j − 1]) .
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The final DTW distance between the two considered time series X and Y is
D[n, n]. Now that the notion of distance is well defined, we can perform hierar-
chical clustering by computing the symmetrical distance matrix of size m × m
representing the DTW distances between every station. We can connect each
station to its K Nearest Neighbors in the same cluster from the clustering ob-
tained, as shown in Figure 2d. The representation of the weights is done via the
transparency and thickness of the edges for the Figures 2b to 2d. In Figure 2d,
nodes are colored according to the cluster to which they belong. A careful eye will
notice that edge weights in southern Belgium are generally lower than in north-
ern Belgium. One explanation for this phenomenon is that stations in the south
typically have much higher DTW distances from each other than in the north.
The complex topography of the southern region influences this phenomenon.

(a) 3-KNN (b) 3-KNN Weighted

(c) 3-KNN Weighted with altitude
limit

(d) 3-KNN built with DTW clus-
ters

Fig. 2: Spatial Graphs examples

Temporal Graph. The second graph to be constructed is the graph of the
columns of M , i.e., the temporal graph. Each column of M is a node in the
graph Gw. We rely on the timestamp associated with each column of M to build
the graph, using an approach similar to the TRMF completion model [36]. The
lag set L is the (repeating) dependency pattern of the graph. When L = {1},
the temporal graph is straightforward, with each node connected to its previous
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and next measurement, as shown in Figure 3a. Figure 3b shows the case when
L = {1, 2}, which adds links with a longer horizon.

For the choice of edge weights in the temporal graph, we use the rule wi = 1/i
to emphasize the importance of short-term relationships in the data. Shorter lags
often reflect more immediate or direct dependencies, while longer lags may be
more influenced by noise or other indirect factors.

t1 t2 t3 t4
w1 w1 w1 · · ·

(a) L = [1]

t1 t2 t3 t4
w1 w1 w1

w2 w2

· · ·

(b) L = [1, 2]

Fig. 3: Temporal Graph with different lag sets L

Simulating missing entries To assess our model’s accuracy, we need to artifi-
cially introduce further missing values into matrix M . These artificially induced
missing entries will serve as a basis to determine the errors our model generates
during data completion.

Looking at the flow of data returned by weather stations, we can see two dif-
ferent types of missing data patterns. Either the station returns no measurements
for several hours up to several consecutive days, or it sends data intermittently;
in this case, there is a lot of missing data, but of short duration: 30 minutes to
1 hour.

To evaluate the performance of completion methods, we artificially hide data
and evaluate all methods by calculating the RMSE of the prediction with the
initially hidden values. With our dataset, we perform two separate experiments.
In the first, we simulate missing data in a few consecutive blocks of between 1
and 3 days in size (as shown in Figure 4a). The other experiment simulates much
missing data, but of small size, between 20 minutes and 2 hours (as shown in
Figure 4b).

Hyperparameter optimization We used a Monte Carlo Cross-Validation ap-
proach to optimize the hyperparameters of our models, simulating realistic miss-
ing data patterns in our weather dataset. Using a training set from 2020-2022,
we selected 10 non-overlapping weeks, generating 5 missing data patterns for
each. Hyperpameters, including rank, regularization constants, and graph con-
struction parameters, were tuned by minimizing the average RMSE across these
50 folds. The optimal hyperparameters found through this process were used
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for the final evaluation on the test set. Specific values for these optimal hyper-
parameters, along with the code for reproducing our GridSearch approach, are
available in our GitHub repository.

(a) Block (b) Spread

Fig. 4: The two scenarios considered, the hatched areas represent the missing
data.

4.1 Results

Our comparative study evaluated seven different methods for imputing miss-
ing data in weather time series, including traditional approaches (IDW [14] and
PCA [16]), standard matrix completions (LMaFit [34], SoftImpute [9], RTRMC [5]),
and graph-regularized matrix completion methods (GRALS [28] and our pro-
posed GR-RTRMC). Table 1 shows the average RMSE and computational time
on the test sets for both considered scenarios.

In the Block scenario, representing contiguous regions of missing data, our
GR-RTRMC method demonstrated superior performance with an RMSE of
0.45◦C. The GR-RTRMC method significantly outperformed traditional meth-
ods and other matrix completion methods. Notably, GR-RTRMC improved upon
GRALS (0.53◦C) and RTRMC (0.49◦C), highlighting the effectiveness of our ap-
proach combining graph regularization with optimization on low-rank manifolds.

In the Spread scenario, representing more dispersed missing data, SoftIm-
pute showed the best performance with an RMSE of 0.41◦C, closely followed by
our GR-RTRMC method (0.43◦C). While this might suggest that graph regu-
larization methods offer less advantage in scattered missing data patterns, it is
important to note that the performance of GR-RTRMC could potentially be im-
proved through enhancements to the input graphs. The current implementation
uses some relatively simple graph construction methods, and more sophisticated
approaches to graph creation could potentially boost GR-RTRMC’s performance
in such scenarios.

The violin plot in Figure 5 compares the error distributions for the six ma-
trix completion methods considered. The results for LMaFiT have been omitted
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Table 1: Average RMSE (in ◦C) and average computational time (in seconds) on
the test set for every method considered. Results for the two types of missing
data generation on the weather time series dataset

Block Spread

Methods RMSE Time RMSE Time

IDW 0.64 0.14 0.57 0.19
PCA 0.61 0.25 0.68 0.35

LMaFiT 0.81 4.9 0.76 4.6
SoftImpute 0.53 3.1 0.41 2.9
RTRMC 0.49 3.4 0.46 3.7

GRALS 0.53 8.0 0.63 12.5
GR-RTRMC 0.45 8.6 0.43 9.6

for presentation purposes, mainly due to the poor results obtained with this
method. GR-RTRMC demonstrates a more compact error distribution involv-
ing improved prediction accuracy and consistency. The plot indicates the prob-
ability density of the completion errors, with wider sections indicating higher
density. GR-RTRMC demonstrates a more compact error distribution, suggest-
ing improved accuracy and consistency in predictions. In contrast, IDW and
PCA show wider distribution, implying greater variability. GRALS and PCA ex-
hibit a slight bias, with their distribution marginally shifted from the zero line.

5 Conclusion

This study introduced Graph-Regularized Riemannian Trust-Region Matrix Com-
pletion (GR-RTRMC), a novel approach combining Riemannian optimization on
the Grassmann manifold with graph-based regularization. Our Belgian weather
station data evaluation demonstrated that GR-RTRMC outperforms traditional
methods and other state-of-the-art matrix completion techniques, particularly
for block-wise missing data. GR-RTRMC also showed competitive performance
for spread-out missing data, consistently improving upon both GRALS and
RTRMC.

There are several directions for future studies, such as refining graph con-
struction methods, optimizing computational efficiency, or applying the model
to other problems where a graph structure is available.
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Fig. 5: Violin plot of completions errors (in ◦C) for every method considered on
a test set experiment in the Block scenario.
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