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Abstract. Quantum Computing is a rapidly developing field with the
potential to tackle the increasing computational challenges faced in high-
energy physics. In this work, we explore the potential and limitations
of variational quantum algorithms in solving the particle track recon-
struction problem. We present an analysis of two distinct formulations
for identifying straight-line tracks in a multilayer detection system, in-
spired by the LHCb vertex detector. The first approach is formulated
as a ground-state energy problem, while the second approach is formu-
lated as a system of linear equations. This work addresses one of the
main challenges when dealing with variational quantum algorithms on
general problems, namely designing an expressive and efficient quantum
ansatz working on tracking events with fixed detector geometry. For this
purpose, we employed a quantum architecture search method based on
Monte Carlo Tree Search to design the quantum circuits for different
problem sizes. We provide experimental results to test our approach on
both formulations for different problem sizes in terms of performance
and computational cost.

Keywords: Variational Quantum Algorithms · Particle Track Recon-
struction · Monte Carlo Tree Search · Quantum Ansatz Search.

1 Introduction

In large-scale particle physics experiments, particles are collided at high energies
and at high frequencies of 40 MHz, in order to study the fundamental forces of
nature. In a single collision event, hundreds of new particles are simultaneously
produced and traverse through sensitive detection layers where they deposit
† These authors contributed equally to this work. The order of the first two authors
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small amounts of energy, resulting in so-called hits in the detectors. These hits
are then reconstructed with fast algorithms into particle trajectories or tracks
that are used in subsequent analyses. In the upcoming High Luminosity phase
of the Large Hadron Collider (LHC), the number of simultaneous collisions will
increase significantly leading to the production of unprecedented data volumes
to be processed. The increase in complexity presents a challenge still to be re-
solved, since the track reconstruction task scales to the power of 2-3 with the
number of hits per layer.

Various approaches have been pursued [14], at the time of writing the most per-
formant approach is based on GPU parallel track reconstruction of events [12].
There have been attempts to leverage quantum computing to solve the track-
ing problem. As tracking can be expressed as a Quadratic Unconstrained Binary
Optimization (QUBO) problem many quantum algorithms can be applied. Some
popular approaches are; Quantum Graph Neural Networks [11,19,41], quantum
annealing [3,35], quantum annealing-inspired algorithms [31] and Variational
Quantum Eigensolver (VQE) using a sub-QUBO formulation of the problem
and tested it on real hardware [18]. Moreover, the tracking problem has been
mapped to a linear system of equations and in [29] the authors prove that it ful-
fills all the properties necessary to employ the Harrow–Hassidim–Lloyd (HHL)
algorithm, which gives theoretical guarantees for an exponential advantage com-
pared to classical techniques in terms of computational complexity. Although
experimental results have shown promising results, a more extensive application
of the HHL algorithm is still unfeasible on Near Intermediate-Scale Quantum
(NISQ) devices [33].

In this article, we employ the hardware-tailored approach of the Variational
Quantum Algorithms (VQAs) for the particle tracking problem, that allows con-
sideration of the user’s available hardware specifications. We address one of the
main limitations of these methods, that is the choice of the quantum circuit
ansatz [7], as also highlighted for our specific problem in [18]. VQAs are hybrid
quantum-classical algorithms where the problem of interest is encoded into an
optimization task over parameterized quantum circuits. The choice of quantum
circuit to optimize on, known as ansatz, significantly affects the performance of
the algorithm [7]. In this context, it the automatic design of ansatz for VQA
emerged as a relevant research direction, known as quantum architecture search,
or also quantum ansatz search. It can be seen as the quantum analogue of design-
ing the structure on Artificial Neural Networks [34]. For this scope, we employ an
automated quantum ansatz search technique introduced in [26] based on Monte
Carlo Tree Search (MCTS) [10]. Moreover, we provide a deeper overview on
the performance of Variational Quantum Algorithms [7] for particle track recon-
struction by considering two different formulations. One is a ground state energy
problem and is solved through a VQE [23], similar to [18]. While the other is
encoded in a system of linear equations, equivalent to the HHL formulation [28]
and solved through the Variational Quantum Linear Solver (VQLS) [5]. Note
that the ansatz search problem relates to both formulations. Hence, MCTS is
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used to design the ansatz for the VQE and VQLS independently and for all the
tested problem sizes.

The goal is to find an ansatz that solves the tracking problem for different
problem sizes and configurations. To test our approach we provide experimental
results based on noiseless simulations of both problem formulations.

2 Particle Track Reconstruction

In this paper, we address the particle tracking problem for a simplified version of
the VELO subdetector of the LHCb experiment at the LHC at CERN [9]. This
is the subdetector immediately surrounding the particle collision point. This
detector consists of two sides of 26 vertically oriented pixel sensors arranged
along the beam line positioned around the LHC collision point. The detector
geometry, particle hits and particle tracks can be seen in Figure 1. This figure
shows the complexity of a simulated event under a realistic detector response.
One key aspect of the VELO is that due to the lack of a magnetic field, the
particle tracks are straight lines, which can also be seen in Figure 1.

Solving the particle track reconstruction using quantum algorithms requires
us to find a representation of the problem in such a way that it takes advantage
of the quantum computation. Considering the detector geometry we construct
a fully connected graph where the graph layers are the detector modules. Each
layer has all the hits that pass through that detector layer and each connection
represents a possible track segment (doublet).

We assign a binary value to each track segment, Si = {0, 1}, where a 1
indicates the doublet being part of a genuine particle track and a 0 represents
the contrary, this construction can be seen in Figure 2. These doublets will be
the basis of constructing an Ising-like Hamiltonian, described in Section 3.

Fig. 1. A full event example of the LHCb VELO detector. The white dots represent
the detector hits and the blue lines are the reconstructed tracks. Credit: D. Nicotra.
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Fig. 2. Graph representation of an event with 5 detector layers and 6 particles (Toy
Model). The vertical lines represent the detection layers, and the red circles are the
hits interconnected with doublets/segments. The full-color segments are part of the
found tracks, the grey segments are combinatoric backgrounds. Where Si and Sj are
doublets with their value indicating if they are part of a track [29].

To test the algorithms in a quantum simulator we use a toy model of the
VELO detector, which was introduced in [29] and is available publicly through
the associated GitHub page [28]. This model allows us to test tracking scenarios
where we can define the number of particles and the number of detector layers, a
visual representation of this is Figure 2, which shows an event. In this model, the
segments/doublets are made by all possible connections between hits on adjacent
layers, and tracks are a collection of aligned segments of length layers− 1.

3 Variational Quantum Algorithms for Particle Track
Reconstruction

Variational Quantum Algorithms (VQAs) are hybrid quantum-classical algo-
rithms where the problem of interest is encoded into an optimization task over
parameterized quantum circuits [7]. Solving the particle track reconstruction
problem with VQAs consists of three main parts. First encoding the classical
combinatorial problem in a quantum setting for VQAs. Then, design a quantum
ansatz that is expressible enough for different collision events with fixed detec-
tor geometry. Finally, optimize the angle parameters of the ansatz designed.
In Section 3.1, we describe the Variational Quantum Eigensolver (VQE) used
to find the ground state energy of the Hamiltonian introduced in Eq. (3) [23].
In Section 3.2, we describe the Variational Quantum Linear Solver (VQLS) [5]
used to solve the system of linear equations defined in Eq. (9). In Section 3.3,
we describe the key encoding process of the classical problem in a circuit-based
quantum computing setup.
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3.1 Variational Quantum Eigensolver

The Variational Quantum Eigensolver [23] has advanced quantum chemistry by
enabling the study of molecules on NISQ devices. VQE defines the problem
through the system’s physical properties, such as its geometric structure and
atomic correlations, which are described by the system’s Hamiltonian. Similarly,
the geometry of straight particle trajectories is encoded in the Hamiltonian in
our application. Then, the objective is to minimize the cost function C, or energy,
defined by the expectation value of the Hamiltonian H of the system:

CV QE(θ) = ⟨ψ(θ)|HV QE |ψ(θ)⟩ (1)

where ψ is the variational circuit ansatz and θ its gate parameters. The minimum
value C̄V QE corresponds to the ground state energy

C̄V QE = min
ψ

⟨ψ|HV QE |ψ⟩ (2)

corresponding to the ground state ψ̄ composed of both the optimal circuit struc-
ture ψ̄ and gate parameters. The rounding of the amplitudes of the ground state
ψ̄(θ) to a binary vector is the solution to the tracking problem.

HV QE: To solve the tracking problem using a VQE we define an Ising-like
Hamiltonian whose ground state eigenvector represents the solution to the par-
ticle tracking problem. This is equivalent to minimizing the energy function of
a Hopfield network [22]. In this paper, we use a slightly modified version of the
Denby-Peterson (DP) Hamiltonian [13,32], which has been previously used to
solve tracking problems[45]. We define this Hamiltonian as

HV QE = Hang(S, ϵ) + γHbif (S) + δHocc(S, Nhits) (3)

Hang is a modified angular term defined in [29], where S is a doublet as
defined in Figure 2. It creates a step function that promotes the construction
of long smooth tracks and forbids forming strongly kinked trajectories. The
parameter ϵ represents the threshold that defines aligned segments. The Hbif

penalizes bifurcations, where a single track splits into two or more branches,
which are usually non-physical and tend to represent noise rather than real
particle tracks. Hocc constrains the number of reconstructed segments to be
approximately equivalent to the number of hits in the detector, ensuring that
each hit contributes to the reconstruction and preventing an overabundance of
segments. The parameters γ and δ allow for the fine-tuning of the Hamiltonian
to adapt to different detector or data characteristics.

3.2 Variational Quantum Linear Solver

The Variational Quantum Linear Solver (VQLS) [5] leverages variational meth-
ods to solve linear systems of equations by optimizing a cost function. A system
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of linear equations is defined by a matrix A and vector b, where the goal is to
find a vector x such that:

Ax = b (4)

Given finding vector x is our algorithms objective, our algorithms inputs are
A, b and ansatz V (θ). The matrix A and vector b need to be efficiently encoded
into the quantum system, this process is described in Section 3.3. We implement
the linear map A as a coherent probabilistic operation [5]. The VQLS aims to
prepare the state |ψ⟩ where x ≈ |ψ⟩, such that A |ψ⟩ is proportional to |b⟩

|ϕ⟩ = A |ψ⟩ ≈ |b⟩ (5)

To approximate the solution |ϕ⟩, we apply a problem-specific ansatz V (θ) to
the ground state |0⟩, resulting in the state |ψ⟩ = V (θ) |0⟩. The goal is to optimize
the parameters θ to maximize the overlap between the quantum states |ϕ⟩ and
|b⟩. This overlap is quantified by the following cost function:

CV QLS(θ) = 1− | ⟨b|ϕ⟩ |2 (6)

The cost function is an implementation of the intuitive thought that given a
|ϕ⟩ and projector |ϕ⟩ ⟨ϕ|, we want a cost function based on the overlap between
this projector and the subspace orthogonal to |b⟩ [5]. However, we do not imple-
ment A |ψ⟩ directly we rather measure the ratio between the probability of our
circuit being in the ground state and the probability of the ancilla qubits being
in the ground state. Taken as an indirect measurement of the overlap, in what
[27] names the Coherent VQLS, which defines the overlap as

| ⟨b|ϕ⟩ |2 =
P (All qubits are in the ground state)

P (Ancilla qubits are in the ground state)
(7)

The cost function can be computed using easily evaluated quantities: the
ground state vector, the full quantum system state, and the ancilla qubit states.

HV QLS: For the VQLS algorithm, we need to construct a system of linear
equations whose solution solves the tracking problem. In [29] it is shown that
we can simplify the VQE Hamiltonian maintaining the angular term only and
apply a relaxation procedure to make the Hamiltonian differentiable. Then by
taking the differential of the Hamiltonian, it can be shown that

∇H = −AS+ b (8)

Therefore finding the minimum of the Hamiltonian ∇H = 0 is equivalent to
solving AS = b. The VQLS Hamiltonian is defined as

HV QLS = Hang(S, ϵ) + ζHspec(S) + ηHgap(S) (9)

The spectral term Hspec is included to ensure that HV QLS is a positive-
definite matrix and shifts the value of the diagonal of A by a constant ζ. The
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Hgap ensures that there is a gap in the solution spectrum of S, which defines
the threshold that discriminate between solution and non-solution segments, by
contributing to the matrix A and defining b.

b = η(1, 1, ..., 1) (10)

3.3 Encoding

The encoding of classical information into a quantum system is a key aspect
of any quantum computing algorithm, as to leverage the power of the quantum
computation we must first be able to efficiently encode our classical information.
We implement two encoding protocols for our VQE and VQLS problems. For
both cases, we first construct matrices AV QE and AV QLS from their respective
Hamiltonians defined in Eq. 3 and 9. We then take these matrices and perform
a Pauli decomposition, which describes our matrices as linear combinations of
tensor products of the Pauli matrices σi, where i ∈ {0, 1, 2, 3} 1. The Pauli
decomposition can be expressed as

A =

n∑
i1,i2,...,in

ci1,i2,...,inσi1 ⊗ σi2 ⊗ ...⊗ σin (11)

where ci1,i2,...,in = 1
2nTr(A · σi1 ⊗ σi2 ⊗ ...⊗ σin).

We use the Pennylane implementation of the Pauli decomposition [21], which
has a worst-case time complexity of O(n4n) where n is the number of qubits
needed to encode the matrix. For the VQLS we require one additional encoding
step which is that of the vector b defined in Eq. 10. In general, one needs to
construct a unitary Ub such that |b⟩ = Ub |0⟩, but since our b is trivial as we set
η = 1 in Eq. 10, therefore all we need to do to encode it is apply a Hadamard
gate to each qubit encoding b 2.

For the VQLS Pauli decomposition, the following relations hold;
∑L−1
l=0 cl = 1

and cl ≥ 0, which constructs a normalized probability distribution where l is
padded to a power of 2, where L is the number of Pauli gates in the decompo-
sition. We need log2 l ancilla qubits to encode the matrix A. This allows us to
carry out the following steps:

1 The Pauli matrices σi form a complete basis spanning the space of all 2×2 matrices:

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

2 The Hadamard gate is a one-qubit operation that maps the classical computational
basis states, |0⟩ and |1⟩, to equal superpositions of both. Its matrix representation
is:

H =
1√
2

(
1 1
1 −1

)
.
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1. PauliMatrix Encoding: We apply multi-controlled σi for each index in-
dicated by the Pauli decomposition. Each Al is used as a multi-controlled
gate, where the Pauli decomposition gives the target qubit index [21], and
the control qubits are defined by the binary representation of the l index of
matrix Al.

2. Coefficient Encoding: Next we embed the amplitudes of the coefficients
into the state of the ancilla qubit. This is done through a nonlinear feature
map that maps the coefficients to a quantum Hilbert space [37]. Pennylane
AmplitudeEmbedding functionality is used to embed our coefficients [4].

4 Quantum Ansatz Search

In the context of VQAs, an ansatz refers to the "guess" on the parameterized
quantum circuit whose parameters have to be optimized in order to minimize
the cost function. The performance of VQAs are significantly dependent on the
ansatz choice, which defines their expressability and trainability [7]. An ansatz
consists of an ordered sequence of quantum gates V with their respective po-
sitions and corresponding angle parameters θ. When the problem under study
presents peculiar symmetries it is possible to define guidelines to design ‘problem-
inspired’ ansatz [23,25,15]. In our problem„ we have not extensively searched for
symmetries to exploit in order to solve the problem for different events and
different problem sizes. However, it might be a fruitful research direction. In
fact, using brute-force algorithms to find a suitable ansatz is unfeasible given
the exponential scaling of the computational time with respect to the problem
size [30]. In this scenario, Quantum Architecture Search (QAS), also known as
quantum ansatz search, emerges as a crucial paradigm to automatically explore
the architectures of parameterized quantum circuits by leveraging computational
resources [23,20,40,44].

In the following sections, we describe the ansatz search problem in the con-
text of particle track reconstruction. Note that we have to search for a suitable
ansatz for both problem formulations independently. In both cases we tackle the
problem through the Monte Carlo Tree Search introduced in [26].

4.1 Ansatz Search for Particle Tracking

The quantum ansatz problem consists of finding a suitable structure for the vari-
ational quantum circuit, that given the geometry of the detector, solves particle
track reconstruction. The variational quantum state |ψ⟩ = V |0⟩ can be generally
written as a sequence of parameterized and non-parameterized unitaries

V (θ) =

l∏
i=1

Vi(θi) , (12)

where l is the number of quantum gates Vi chosen from the universal gate set
G = (CX,Rx, Ry, Rz) consisting of the controlled-NOT gate and of the param-
eterized single-qubit rotations [30] and θ = (θ0, θ1, ..., θl) ∈ Rl is the vector of
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Fig. 3. The goal in QAS is to define the ordered sequence of quantum gates Vi(θi)
composing the variational state V (θ) |0⟩, which optimizes a given objective function C.

angle parameters. In this notation, the θi is zero-dimensional if Vi is a non-
parameterized gate, the starting state is |0⟩ = |0⟩⊗n, V is an n-qubit operator
and Vi is either a single-qubit or 2-qubit operator tensored with the identity
operator on the subspace of the unaffected qubit(s).

4.2 Design Variational Quantum Ansatz through Monte Carlo Tree
Search

Monte Carlo Tree (MCTS) is a best-first search method whose basic implemen-
tation does not require any domain-specific knowledge. This trait is particularly
useful for the design of algorithms in artificial general intelligence [16,38].

MCTS is based on a randomized exploration of the search space. Using the
results of previous explorations, MCTS gradually builds up a search tree in
memory, and successively becomes better at accurately estimating the values of
the most promising actions. It consists of four strategic steps [8], repeated as long
as there is time left. (1) In the selection step the tree is traversed from the root
node downwards until a state is chosen, which has not been stored in the tree. (2)
Next, in the roll-out step, actions are randomly chosen until a terminal state is
reached. (3) Subsequently, in the expansion step one or more states encountered
along the roll-out are added to the tree. (4) Finally, in the backpropagation step,
the reward is propagated back along the previously traversed path up to the root
node, where node statistics are updated accordingly. MCTS grows its search tree
gradually by executing the four steps described above. Such an iteration is called
a full simulation. The selection algorithm used in this work is the UCB1 [1], which
balances exploitation and exploration of the search [6]. Given a state s and the
set of all possible actions A, our MCTS takes the action a∗ with the highest
UCB value

a∗ = argmax
a∈A

UCB(s, a) (13)

UCB(s, a) =
Q(s,a)

N(s,a)
+ c

√
logNs
N(s,a)

(14)
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where N(s,a) is the number of times the agent took the action a from the state s,
Ns =

∑
a∈AN(s,a) is the total number of times the agent visited the state s and

Q(s,a) is the cumulative reward the agent gained by taking the action a from the
state s. The constant c is a parameter that controls the degree of exploration,
captured by the second term of Eq. 14 versus the exploitation captured by the
first term. Here, c has been set to 0.4 based on previous fine-tuning experiments.

The implementation of MCTS employed to design the ansatz is an agnostic
approach using a random roll-out [26]. Here each node corresponds to a n-qubit
quantum circuit and each move corresponds to a specific modification of it.

The reward for MCTS is a real-valued function on the domain of n-qubit
quantum circuits defined as follows for the two independent problems. The re-
ward RV QE for VQE is

RV QE(|ψ(θ)⟩) = −⟨ψ(θ)|H |ψ(θ)⟩ . (15)

the reward RV QLS the variational quantum linear solver is

RV QLS(|ψ(θ)⟩) = exp(−CV QLS(θ)). (16)

Note that the reward function is well-defined on all the tree nodes. Since each
of them can be considered a potential terminal state, the roll-out step is not
necessary to evaluate a new visited node but it may give insights into future
moves during the search.

The search starts from the quantum circuit with a Hadamard gate applied on
each qubit, previously initialized to |0⟩. This allows to start from a non-classical
state, given by the equal superposition of all computational basis states. MCTS
explores the search space by sampling from four classes of allowed actions:

1. adding (A) a random gate on a random qubit at the end of the circuit;
2. swapping (S) a random gate in the circuit with a new one;
3. deleting (D) from the circuit a gate at random position;
4. changing (C) the angle parameter θi of a randomly chosen parameterized

gate in θi + ϵ, where ϵ ∼ N (0, ∆θ) is sampled from a normal distribution
with mean zero and standard deviation ∆θ.

MCTS chooses between the four classes of actions by sampling from a prob-
ability mass distribution p = (pA, pS , pC , pD), where pA, pS , pC , pD correspond
to the probabilities of choosing the respective action. A clarifying scheme is rep-
resented in Figure 4. The hyperparameters p and ∆θ have been fixed according
to the previous work [26]. This technique is inspired by a framework proposed by
Franken et al. [17] for an evolutionary strategy on quantum circuits. The quan-
tum gates are sampled from the universal gate set G, introduced in the previous
section. A progressive widening technique [8] is also incorporated in the MCTS
to restrict the infinite discrete number of moves allowed from a state s to a finite
number of moves:

ks = ⌈βPWNαPW
s ⌉ (17)
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where the hyperparameter αPW ∈]0, 1[ and βPW > 0 have been fixed according
to the previous work: αPW = 0.3 and βPW = 1 [26]. Since we are interested in
the whole sequence of gates an action-by-action search is employed in order to
distribute the search time along all the levels of the tree [2,36]. Once a level of
the tree is sufficiently explored, the MCTS commits to the best action.

At the end of the search, the best path that builds the ansatz is retrieved
according to the method described in [26].

4.3 Parameter Optimization

The last step is fine-tuning the angle parameters of the ansatz found by the
MCTS. It is carried out by the ADAM optimizer [24], a gradient-based classical
optimizer, chosen for its robustness and adaptability. It adjusts the learning rates
adaptively for each parameter by computing the first and second moments of the
gradients. To apply a gradient descent technique in the circuit-based quantum
computing setting we used the parameter-shift rule [42].

Fig. 4. Monte Carlo Tree Search scheme for quantum circuit design, taken from [26].
In our QAS framework, the action space is defined by sampling a discrete number of
quantum circuit modifications from a continuous set of them.
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Table 1. Generation of the particle track reconstruction with a toy model [29].

Qubits
n

Hamiltonian Size
2n × 2n

Particles Layers Solution
Segments

Total
Segments

3 8× 8 2 3 4 8
4 16× 16 2 5 8 16
5 32× 32 4 3 8 32
6 64× 64 4 5 16 64
7 128× 128 8 3 16 128
8 256× 256 8 5 32 256

5 Results

We explored different problem sizes with increasing combinatorial complexity to
evaluate the performance of the MCTS, introduced in Ref [26] to design quantum
ansatz for the VQE and VQLS formulations of the particle track reconstruction
problem.. Then, we construct HV QE and HV QLS for the toy model of the VELO
detector geometry, introduced in Section 2. Using this model we can specify the
number of particles and layers. From this, we derive the size N × N of the
hamiltonian, where N = (n° of particles)2 × (n° of layers − 1). The number of
qubits required in both formulations is n = log2N and N grows logarithmically
with the problem size. We refer the reader to Table 1.

MCTS designs circuits tailored on the quantum hardware available to the
user [26]. In our case as we run simulated experiments, we fix a maximum depth
to keep the running time low, we chose 50. The MCTS has been equipped with
a computational budget fixed to 104 for problems with n ≤ 5, while it has been
fixed to 105 for bigger n as the search space to explore is larger.

5.1 Comparison VQE-VQLS

The quality of an ansatz is evaluated on its ability to generate correct track-
ing solutions over 1000 independent runs. We define the efficiency as the ratio
between the doublets predicted correctly and the total number of doublets in
the tracks. The fault rate is defined as the ratio between the number of doublets
that are mistakenly predicted as part of tracks over the total number of segments
that do not belong to any track. The numerical results that compare VQE and
VQLS for n = 4 are plotted in Figure 5. The complementary results for the other
problem size are summarized in Table 2 where we averaged the efficiency and
fault rate over the 1000 independent runs.

In the both setups, some of the MCTS solutions are able to perfectly solve the
tracking problem at multiple sizes, while many others are able to identify only a
fraction of the tracks. Although the fixed computational budget given to MCTS
and the constraint to produce quote shallow quantum circuit, it recognizes the
solutions for different and increasing problem sizes. These perfect solutions can
be seen in Figure 5. Future work will study the properties of those circuits
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Fig. 5. Experimental results for the problem with n = 4 qubits .

and pass the information directly to the model or filtering them with post-
processing. The experiments revealed that VQE results in a more convenient

Table 2. VQE and VQLS results as mean values and standard deviation over 1000
independent runs. VQLS was limited to n = 6 due to high computational cost and
memory requirements.

Hamiltonian Size
2n × 2n

Efficiency Fault Rate Total Gates Parameterized
Gates

VQE

8× 8 0.56 (±0.18) 0.39 (±0.20) 16 (±6) 12 (±6)
16× 16 0.58 (±0.21) 0.14 (±0.20) 18 (±7) 12 (±6)
32× 32 0.42 (±0.17) 0.17 (±0.07) 20 (±5) 14 (±5)
64× 64 0.51 (±0.19) 0.14 (±0.08) 25 (±6) 17 (±5)

128× 128 0.30 (±0.14) 0.09 (± 0.04) 25 (±4) 17 (±4)
256× 256 0.27 (±0.17) 0.05 (±0.02) 31 (±7) 20 (±6)

VQLS

8× 8 0.22 (±0.32) 0.22 (±0.32) 14 (±5) 7 (±4)
16× 16 0.32 (±0.32) 0.31 (±0.31) 16 (±6) 7 (±4)
32× 32 0.26 (±0.28) 0.26 (±0.25) 16 (±6) 7 (±4)
64× 64 0.26 (±0.25) 0.26 (±0.23) 17 (±6) 7 (±4)
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formulation for MCTS compared to VQLS, on equal quantum circuit size and
classical computational budget, see Figure 5 and Table 2. Note that the depth
of quantum circuits can give serious implications on solution quality. In fact,
the HHL algorithm requires much deeper circuits to "exactly" solve the same
problem tackled by VQLS. While the HHL algorithm provides guarantees on the
quality of the solution [29], the VQLS allows us to study larger problem sizes on
NISQ devices, albeit with reduced performance.

6 Conclusions

In conclusion, our study tested the MCTS approach introduced in [26] to design
the quantum ansatz for the Variational Quantum Eigensolver [23] and for the
Variational Quantum Linear Solver [5] for solving particle track reconstruction
problem. Designing an ansatz for the VQE formulation turned out to be eas-
ier than for VQLS. We showed that MCTS manages to design rather shallow
quantum circuits that provide suitable solutions for the toy model considered.
However, as the problem size increases, the amount of classical computational
resources needed to explore the exponentially larger search space of the quan-
tum circuit is still quite high to compete with the classical state of the art.
Employing an agnostic algorithm as the MCTS with random rollout [26] limits
the performance compared to more domain-specific approaches. The next step
for this work is to integrate the intricacies of the problem domain into MCTS. It
may be realized through a simulation strategy in the rollout step of the MCTS.
Simulation strategies based on heuristics have the potential to significantly im-
prove the performance of MCTS [43]. In case domain knowledge is not readily
available, statistical methods can be employed to enhance the search. An exam-
ple is the n-gram technique, which has been successfully used in MCTS to detect
promising action sequences [39].

In future work, we aim to evaluate the model in a more realistic scenario.
On the one hand, expand the noise-less simulations with simulated noise or real-
hardware experiments. On the other hand, address current limitations related to
the toy model employed. Testing Hamiltonians corresponding to smaller events,
padded with zeros, against ansatz configurations designed for larger events, will
also facilitate a more realistic assessment of the MCTS scalability, reflecting
practical scenarios where the number of particles is unknown a priori.

Data Availability The data and code of this study are openly available on GitHub.
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