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Abstract. Offline Reinforcement Learning allows to learn a controller
for a system from a history of states, actions and rewards, without re-
quiring to interact with the system or a simulator of it. Current Offline
RL approaches mainly build on Off-policy RL, such as Q-Learning or
TD3, with small extensions to prevent the algorithm from diverging due
to the inability to try actions in real time. In this paper, we observe that
these incremental approaches mostly lead to low-quality and untrustable
policies. We then propose an Offline RL method built from the ground
up, based on inferring a discrete-state and discrete-action MDP from
the continuous states and actions in the dataset, and then solving the
discrete MDP with Value Iteration. Our empirical evaluation shows the
promises of our approach, and calls for more research in Offline RL with
dedicated algorithms.

Code: https://github.com/vub-ai-lab/offline-rl
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1 Introduction and Related Work

Offline Reinforcement Learning is the research area that considers the problem
of learning a good policy from a dataset of states, actions and rewards (16).
The dataset is assumed to have been produced by one or more behavior policies,
and the aim of the algorithm is to learn a policy that achieves an expected
discounted sum of rewards above the one of the behavior policies. Intuitively,
we aim at learning, from historical data, a policy that is better than any of the
policies used to generate that data.

The main problem of Offline Reinforcement Learning is the inability for the
algorithm to perform counterfactual reasoning. There is no way, for the RL agent,
to know the quality of some action in some state if this combination of state and
action does not appear in the dataset.

Most current Offline Reinforcement Learning build on Off-policy RL algo-
rithms, such as Q-Learning variants, with a special loss or special techniques that

https://github.com/vub-ai-lab/offline-rl
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prevent the learned policies from being too different from the policies implied by
the dataset. This aims at keeping the learned policy in an area where the dataset
is usable to compute the quality of actions. Batch-Constrained Q-Learning (7),
one of the foundational Offline RL works, modifies the Q-Learning algorithm to
only look at actions that have support in the dataset when computing its max
operation. TD3-BC (5) builds on the state-of-the-art deterministic-policy TD3
algorithm (6), with a behavior cloning loss to prevent the actor from being too
different from the policies in the dataset. Conservative Q-Learning (15) modifies
the Q-Learning equations to learn a lower-bound (according to the dataset) of
the quality of the actions (produced by the actor). The aim is to ensure that
actions not represented well in the dataset have low Q-Values, and are thus not
selected by the actor. Implicit Q-Learning (13) uses an expectile regression loss
to learn Q-Values with a SARSA-like equation (that requires no explicit policy,
and hence looks only at the dataset by definition), then proposes a method to
extract a policy from the learned Q-Values. OneStep (3) reviews several policy
evaluation (learning Q-Values) and policy improvement algorithms, and shows
that, with most combinations, doing a single iteration of evaluation and then im-
provement outperforms conventional Offline RL algorithms that perform several
learning iterations.

The literature on Offline RL is vast, and the above paragraph only scratches
the surface. Most of the algorithms mentioned above are reviewed and compared
in (10), from which we make the following observations:

– Much research aims at Offline Reinforcement Learning;
– No algorithm is clearly better than the other ones, which one is best varies

greatly depending on the task being used for evaluation;
– All the algorithms follow the same approach: take an Off-policy (but online)

RL algorithm, extend it in some incremental way to make it amenable to an
offline setting.

In this paper, we propose an Offline RL algorithm with a completely original
architecture, designed with applicability in industrial settings in mind.

2 Overview of the Contribution

Before presenting background on AI techniques not related to Reinforcement
Learning, we briefly present the general idea of our contribution, and thus mo-
tivate such diverse background.

The overall intuition of our contribution is that Offline RL is usually desir-
able in high-cost high-risk environments, such as large industrial plants. Other
environments can be interacted with when learning, or can be used to design a
simulator, alleviating the need for Offline RL. Considering the high-risk nature
of the environment, a policy learned with Offline RL should then never execute
an action that none of the behavior policies would execute. This is completely
opposite to the current approach at Offline RL (learn a completely fresh policy,
but keep it close to the behavior policies), and leads to the following approach:



Trustworthy Offline Reinforcement Learning 3

1. We assume that a finite number of distinct policies was used to generate
the dataset. We use a Conditional Variational Autoencoder to identify these
policies.

2. We consider that what the agent should learn is not what action to perform
in which states, but which policy from the dataset to execute in which state.

3. We assume that which policy from the dataset is the best one changes only at
decision boundaries, lines/planes in the state space that separate contiguous
regions in which a single policy is optimal.

4. We therefore learn a state-space discretization that optimizes the placement
of these decision boundaries by:
(a) Considering a discrete MDP where the finite number of regions are states,

and the finite number of policies in the dataset are actions. We detail
later what the reward function is.

(b) Learning Q-Values with Value Iteration.
(c) Using the average Q-Value as a measure of quality of the MDP.
(d) Iterating on this process with a Genetic Algorithm to find the state-space

discretization that maximizes the quality of the resulting discrete MDP.

The outcome of our algorithm is an identification and approximation of the
policies in the dataset, a state-space partitioning, and a policy that maps re-
gions of the state-space to what policy should be executed in it. Our empirical
evaluation validates our approach, and illustrate its inherent explainability and
trustability aspects.

3 Background

Our contribution being at the intersection of Reinforcement Learning, Genetic
Algorithms and Autoencoders, we now briefly introduce these concepts.

3.1 Markov Decision Process

A Markov Decision Process (1) is a discrete-time sequential decision process, with
t the time variable that measures the current time-step. The state st ∈ S is an
input to the agent at time t, the action at ∈ A is a control signal produced by the
agent, the reward rt = R(st, at, st+1) measures the quality of an action in a state,
the stochastic transition function encodes the dynamics of the environment as
st+1 ∼ T (s|st, at), and the initial state distribution desribes how the environment
is reset to some initial state at the end of an episode, with s1 ∼ µ0(s).

The objective of a Reinforcement Learning agent is to learn an optimal policy
π(a|s) that maximizes Eπ

∑
t γ

trt, the expected sum of discounted rewards ob-
tained by following the policy in the environment. The Reinforcement Learning
agent is not allowed to observe T nor the reward function R. This means that
Reinforcement Learning is a model-free approach, as opposed to planning that
assumes access to a model of the environment.

Conventional online Reinforcement Learning algorithms, reviewed in the ex-
cellent Sutton and Barto book (21), use a variety of methods that require direct
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interactions with the Markov Decision Process to learn the optimal policy. Of-
fline Reinforcement Learning only has access to historical data of past states,
actions and rewards.

3.2 Discrete Variational Autoencoders

Unrelated to Reinforcement Learning, but used in this paper, Variational Au-
toencoders are a neural network design that learns an identity mapping from
an input to itself, but going through an information bottleneck (12). The in-
formation bottleneck can be a small number of real numbers, or an integer in
some finite range in the case of Discrete Variational Autoencoders (19). An au-
toencoder can therefore be seen a having two halves. The first one, the encoder,
maps an input to a latent representation, and the second one, the decoder, maps
the latent representation to some output, trained to look similar to the original
input.

Variational Autoencoders are primarily used in two ways:

1. Focusing on the encoder, to map inputs to a lower-dimensional representation
of them, as a form of dimensionality reduction. No major seminal paper
appears to introduce this use, but numerous works use Autoencoders like
this, for instance to detect faults in ball-bearings (20). This is also how we
use Autoencoders in this work.

2. Focusing on the decoder, to map samples of latent representations back to
full outputs. This allows to train an Autoencoder to learn some complex
probability distribution, from which it is then possible to sample by feeding
normal-distributed latent representations and obtaining in-distribution out-
puts from the decoder (18). Such generative use is also commonly performed
using the well-known Generative Adversarial Networks (9).

Conditional Variational Autoencoders extend the Variational Autoencoders
to take an additional input, a context (11). The CVAE therefore learns the distri-
bution p(x|s), with s the context. In this work, we use a Discrete CVAE to learn
p(a|s, πk), the distribution of actions as seen in the dataset (thus conditioned on
states), with, as a latent representation, simply the index of some policy.

3.3 Genetic Algorithms

Genetic Algorithms, reviewed in the excellent book by Kramer (14), are a gradient-
free black-box function optimization technique. Genetic Algorithms are used
when some parametric function has to be maximized, the function has no com-
putable gradient (otherwise, Gradient Descent would often be preferred), and is
not known to the optimization algorithm.

Genetic Algorithms consider a population of individuals, represented by a
computer form of DNA. In the framework we use for our experiments (8), the
DNA is a list of real numbers, the same length for every individual. Generation
after generation, the individuals are mutated, the best ones are paired to produce
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offsprings (using a cross-over operator), and the worst individuals are removed
from the population. The quality of the individuals is provided to the algorithm
by an objective function, that maps DNA to a real value to be maximized. Over
time, the quality of the individuals increases, until a global maximum is found
(given an infinite amount of time).

4 Contribution

We propose an Offline Reinforcement Learning algorithm, outlined in Section 2,
that consists of the following steps:

1. Learn, with a Conditional Discrete Variational Autoencoder, what behavior
policies exist in the dataset of states, actions and rewards. Choosing which
policy to execute in which states becomes the action in a new Markov De-
cision Process.

2. Optimize a state partitioning neural network, that maps states to clusters.
These clusters form states in a new Markov Decision Process.

3. The state partitioning is optmized with a Genetic Algorithm to produce
Markov Decision Processes that have the highest-possible average value over
states.

4.1 Identifying policies

We assume that the dataset available for learning originates from a system in
which several behavior policies have been used to select actions. In an industrial
setting, this happens often when the engineers vary some parameters of a con-
troller through trial and error, or thanks to gained experience. We assume that
there may be no policy that is the best one in every state, and that the Offline
RL task to solve is finding, in which state, what policy is the best one.

For this, we propose to use a Conditional Discrete Variational Autoencoder
that maps states (the context) and actions to a discrete internal representation,
and then states and the internal representation back to actions:

z ∼ f(z|s, a) (1)
a′ = g(s, z) (2)

with f the encoder that maps a state s and action a to a discrete probability
distribution, from which an integer latent variable z is sampled. g is the decoder,
that maps a state and latent variable to a reconstruction of the action a′. Both
f and g are implemented using feed-forward neural networks of 1 hidden layer of
128 neurons. The sampling of z from a discrete distribution is not differentiable
in its naive form, but we use the straight-through estimator (2) to still attach a
gradient to z, so that minimizing the reconstruction loss between a′ and a causes
gradients to flow into both g and f .
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We observe that our Discrete VAE is much simpler than the current state of
the art, that uses advanced formulas and non-gradient-descent training schemes
(23; 17). In practice, our approach works well for small numbers of policies
and state spaces of moderate dimensions. We leave the study of more advanced
Discrete VAE architectures to future work.

We propose to call the latent variable z the policy index, which allows us to
interpret the Autoencoder as learning, in its encoder, to recognize from which
policy (for some arbitrary learning-dependent numbering) an action in a state
belongs. The decoder is able to map a state and a policy index to the action
that the policy would execute in the state.

Considering an Offline RL dataset of (s, a, r, d) tuples of states, actions, re-
wards, and done signals, we train the Discrete Conditional Variational Autoen-
coder to minimize the mean squared error between a and g(s, z ∼ f(z|s, a)), the
reconstruction loss (12). We observed that no other loss is required. In particular,
there does not seem to be necessary to encourage f to learn a highly stochastic
probability distribution, or any other form of regularization.

4.2 Partitioning the state

We assume an Offline RL dataset with continuous states. We make the observa-
tion that which policy is best to execute in which state usually does not change
for every small epsilon variation of the state variables, but instead changes along
big decision boundaries, occasional large lines that traverse the state space.

The regions inside these lines form clusters of states. The clusters may not
have straight edges, and as such, we choose to use a feed-forward neural network
cθ(s) to map a state s (from the environment) to a cluster index. We use a neural
network with one input per state variable, a single hidden layer followed by a
tanh activation function, and one output per possible cluster index (the user
then has to configure C, how many clusters to produce). Which cluster a state
belongs to is then the arg-maximum of these outputs: c(s) = argmaxi cθ(s, i).

The number of neurons in the single hidden layer can be quite low (down to
8 still provides meaningful partitions in our Table experiment) mainly because
we expect the state partitioning to be relatively simple, made of a small number
of clusters of simple shapes. In the interest of reducing the number of hyper-
parameters of our approach, we choose in our experiments to set that number
to the same number as neurons in the Variational Autoencoder hidden layers
(128).

Now that we introduced the feed-forward network used to partition the state-
space, we can turn to how to train it. We want to learn a state partitioning
that maximizes the average value of a policy over policies (which policy from
the dataset to execute in which state), with the decision boundaries defined by
the neural network. This problem is not differentiable, so no gradient descent
approach can be used. We instead turn to Genetic Algorithms, but first, in the
next section, detail how to evaluate a state partitioning.
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4.3 Discrete Markov Decision Process

We temporarily assume that a state partitioning is provided (in the next sub-
section, we explain how to learn it), and define how we can build a discrete-state
and discrete-action Markov Decision Process from that state partitioning, the
Conditional Discrete Variational Autoencoder described above, and the Offline
RL dataset provided to the agent:

States
States in the discrete MDP are clusters. We can therefore map a continuous
state from the environment to a discrete cluster index, to be used as state
index in the discrete MDP.

Actions
Actions in the discrete MDP are policies from the original dataset, as de-
tected by the Conditional Discrete Variational Autoencoder. Executing an
action in the discrete MDP therefore means executing the a-th policy. The
decoder of the VAE is then able to map a continuous state and a policy
index to a continuous action.

Rewards
The reward for executing a policy in some cluster is defined to be the sum
of rewards, from the dataset, for any state that belongs to the cluster and
an action that belongs to the policy; divided by how many times trajectories
leave the cluster, so how many experiences in the buffer have their state in
the cluster and next-state outside the cluster.

Transition Function
We simply map the states and next states from the dataset to clusters and
next clusters. We count how many times a cluster transitions to another
cluster, and then normalize these counts to obtain probabilities.

Termination Function
We introduce a special absorbing cluster number 0 to which any experience
from the Offline RL dataset transitions when its done flag is true.

Initial State Distribution
We count how many times the initial state of every trajectory belongs to
each of the clusters, and normalize these counts.

Inferring an MDP from another MDP is also sometimes referred as building
a latent-space model (4) and is usually done to be able to prove properties on
the inferred MDP, that still echo to the original MDP. It is possible to measure
how closely the inferred MDP matches the original MDP by using metrics such
as bisimulation (22).

From this discrete MDP, of which the reward and transition functions are
known, a value function V can be computed with Value Iteration (21).

4.4 Optimizing the state partitioning

The above section assumes a state partitioning and uses it to infer a discrete
MDP, and solve it with Value Iteration. We propose to learn the state partition-
ing using a genetic algorithm:
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Population
The individuals in the population are weights for the feed-forward neural
network that maps states to clusters. In our experiments, we use populations
of 100 individuals.

Objective Function
Given an individual, the weights that define a state-space clustering, the
objective function builds the according discrete MDP as described in the
previous section, solves it with Value Iteration, and uses the average value
V (s) over s µ0 as the quality of the individual. µ0 is the initial state distri-
bution.

Implementation Details
The actual algorithm relies on PyGAD (8), a Python library for genetic al-
gorithms. We use the default mutation and cross-over operators. PyGAD’s
TorchGA module is used to map individuals to and from PyTorch neural
networks, used to perform the actual state clustering. The DNA of the indi-
viduals is simply the list of weights of the neural network.

After several generations (500 in our experiments), we obtain weights for the
partitioning neural network that lead to discrete MDPs that have the highest-
possible average value across states. This partitioning, combined with the learned
Q-Values for the resulting discrete MDP, and the Discrete Conditional Varia-
tional Autoencoder, form the learning outcomes of our algorithm.

4.5 Running the optimized policy

After the genetic algorithm produces its final state partitioning, we can either
look at the partitioning for explainability purposes (we do that in our experi-
ments), and/or use the learning outcomes mentioned in the previous section to
control the system. For this, we need to define π(s), the policy that maps a state
from the original environment to an action to perform in that environment. We
do this according to this procedure:

1. Map s to a cluster index using partitioning feed-forward neural network c(s).
2. Use the Q-Table produced by Value Iteration to find which policy index is

best in that cluster: z = argmaxk Q(c, k).
3. Use the decoder of the Conditional Variational Autoencoder, along with the

environment state, to produce the action to execute: a = g(s, z)

Assuming that the VAE learned a good model of the policies in the dataset,
we observe that the actions executed in the environment will always be very
similar to what the behavior policies would execute, with the only learned aspect
being what policy is best in which state.

5 Evaluation

Evaluating Offline RL approaches is fundamentally challenging because, in their
real application domains, there is no supervised dataset nor environment avail-
able for querying, and thus the policies learned through Offline RL have no way
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to be evaluated. However, we still propose an evaluation that aims at answering
the following questions about our approach:

1. Does it run and produce outputs in a reasonable amount of time on several
datasets?

2. Do the results (policies identified, state partitioning, learned optimal policy)
make sense? Would they lead to good performance in the real system?

We evaluate our proposed Offline RL method on two datasets. The first one
is produced from a Gymnasium environment, Table, a simple 2D environment.
On Table, we are able to run the learned policy and compute its actual return
in the true environment. The second dataset is generated by the MATLAB
Brayton Cycle demo, in which fuel is combusted and turned into mechanical
energy thanks to gas turbines. This second dataset has more dimensions, more
complex policies (stacked PID controllers) and better illustrates how our method
can be used in an industrial setting.

We note that Offline RL is usually evaluated on a standard set of benchmarks,
usually using the Minari framework,1 but we observed that these benchmarks
do not represent industrial settings. Industrial tasks are lower-dimensional but
have a more dynamical nature. The Offline RL dataset they come with usually
contains vast amounts of data, but from only a small number of distinct policies.

5.1 Table

The agent is a 2D point on a 1-by-1 table. The state is the (x, y) coordinates of
the agent. The action is a 2D vector (dx, dy). Every time-step, the agent moves
to (x+ 0.01dx, y + 0.01dy) on the table.

If the agent falls of the table (either x or y outside of the [0, 1] range), the
episode terminates with a reward of -50. If the agent enters the region (0.5 ±
0.05, 0.5 ± 0.05), the episode terminates with a reward of 100. Otherwise, the
episode continues with a reward of 0. Episodes are truncated after 100 time-steps.

The offline dataset is generated by repeatedly executing either (1, 1), (1,−1),
(−1, 1) or (−1,−1). Which action to execute is selected randomly every 300 time-
steps, and then maintained during 300 time-steps. The action selection ignores
the state and the termination, which causes some episodes in the dataset to
"change direction" in the middle of the episode.

The environment and the behavior policies are extremely simple, leading to
easily interpretable results. A figure of the environment will be shown along with
the results of applying our method to it.

5.2 Brayton Cycle

The Brayton Cycle, known for its use in jet engines, consists of two back to back
gas turbines, in between whose air is heated up by burning some fuel. The "front"
1 https://minari.farama.org/

https://minari.farama.org/
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turbine spends energy taking in air and compressing it. The "back" turbine uses
the compressed and heated up air to produce mechanical energy, some of which
sent to the front turbine, some of which made available to an external energy
consumer.

The Brayton Cycle represents a simple-enough real-world multi-physics set-
ting, that is usually controlled using PID or cascaded PID controllers. In this
paper, we use the Mathworks Simulink Brayton Cycle example,2 with only a
small wrapper script around it. We hope that this example is accessible eas-
ily enough for the research community to ensure ease of reproduction of our
research.

Fig. 1. Simplified view of the Simulink simulation of the Brayton Cycle, with one
turbine taking in air (purple), a gas (purple) heater that heats the air between the two
turbines, and a second turbine mechanically tied to the first one (green) extracting
energy from the hotter air.

The system is controlled by setting Phi, how much fuel is injected, and VN,
the nozzle opening of the second turbine. The inputs to the controller are the
rotational speed of the turbines, the temperature of the air after combustion,
and the surge margin of the first turbine (SM in Figure 1). Over 1000 seconds,
two setpoints move in a stepwise fashion: the desired rotational speed, and the
desired surge margin. We do not control nor changed the setpoints and use the
ones provided in the Simulink example.

The offline dataset is generated by using 6 variations of the PID con-
troller that control the second turbine’s nozzle opening. The P and I gains are
(1, 1), (2, 1), (1, 2), (0.5, 2), (2, 0.5), (2, 2). We then log the inputs to the controller
as states, and the P and I gains of that PID as action (actions are therefore con-
stant for an entire variation in the dataset). We log the efficiency of the system
as reward. Such data collection is common in the industry and represents the
setting of we don’t know which PID gains are best in which situation and would
like an Offline RL agent to tell us.

5.3 Results on Table

We run our algorithm on Table with the following parameters:
2 https://nl.mathworks.com/help/hydro/ug/sscfluids_brayton_cycle.html

https://nl.mathworks.com/help/hydro/ug/sscfluids_brayton_cycle.html
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Fig. 2. On Table. Left: learned state-space partitioning (colors) and resulting learned
policy (arrows) with our Offline RL algorithm. The arrows point towards the goal and
represent a high-quality policy. Right: same for TD3+BC. The arrows point towards
some attractor state, that is not the true goal state. TD3+BC failed to learn a good
policy.

Identifying policies 6 policies to identify, even though we know that the dataset
only contains 4, this is to show that this parameter can be over-estimated.
The encoder and the decoder of the VAE are both single-hidden-layer net-
works with 128 neurons in the hidden layer.

Partitioning the state 5 clusters, even though we know that 4 would be op-
timal. This is again to show that this parameter can be over-estimated.

Value Iteration 50 Value Iteration steps are performed before the Q-Values
are used to evaluate a state partitioning.

After about 30 minutes of run-time on an AMD Ryzen 5 3500U laptop (4
cores, 2.1 to 3.7 Ghz, 16 GB of RAM), a state clustering that uses 4 clusters is
found, along with 4 policies (that correspond to the policies used for the dataset
generation). The clustering is shown in Figure 2 and allows to reach the goal
from almost any state. A small region on the bottom-left of the goal has arrows
pointing away from the goal, but the average return obtained by this policy in
the environment is still 91.3. We compare how our method evaluates the quality
of the policies (using Q-Values) to actual Monte-Carlo returns in Figure 3.

We also ran TD3+BC (5) on this dataset. We choose TD3+BC because this
algorithm is very close to state of the art in Offline RL, and has an official open-
source implementation.3 After about 30 minutes, TD3+BC learns a policy that
achieves a return of 20, which is significantly worse than what our approach
learned. Interestingly, the average Q-Values produced by the TD3 critics is 90
after several minutes, and then explore to 300 or more. TD3 therefore seems
to over-estimate the Q-Values (the optimal policy for this environment achieves
a return of 100). We can observe the effect of this discrepancy in Figure 2:
3 https://github.com/sfujim/TD3_BC

https://github.com/sfujim/TD3_BC
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Fig. 3. On Table: comparison of the estimated average return of the Offline RL policy
(horizontal axis), for several policies produced through the optimization procedure,
with the actual average return obtained by the policy in the environment (vertical
axis). We observe a good correlation (R2 = 0.73), and thus our method can be trusted
to evaluate the quality of the policies it produces.

TD3+BC learns a policy that goes towards some goal location, but the location
is not the actual goal location.

5.4 Results on the Brayton Cycle

We run our algorithm on the Brayton Cycle example with the following param-
eters:

Identifying policies 10 policies to identify, even though we know that the
dataset only contains 6, this is to show that this parameter can be over-
estimated.

Partitioning the state 10 clusters, to be sure to over-estimate this parameter.
Value Iteration 50 Value Iteration steps are performed before the Q-Values

are used to evaluate a state partitioning.

After about 9 minutes on the same computer as Table, our method finds an
interesting policy for the Brayton Cycle, shown in Figure 4. The P gain of the
PI controller is chosen to be 2 in every state. The I gain is chosen to be 0.5 in
almost every state, except at the beginning where it is chosen to be 2. In Figure
4, we see that the system is tightly controlled by the PI controllers and follows
a single trajectory, with almost no points for making decisions. The trajectories
start at the bottom (low temperature, 5K RPM) and then move upwards. The
small yellow bit indicates the region in which I is chosen to be 2.

We note that the Brayton Cycle Simulink demonstration is not made in a
way that allows to change the PID gains mid-simulation. Thus, it is not possible
to run our learned policy on the system and compute an expected return. We
can only evaluate the policy from a qualitative perspective. These results are
still very encouraging for several reasons:
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Fig. 4. Learned policy for the Brayton cycle, the policy makes sense for this task.
The dataset contains 6 almost-identical trajectories, that start at the bottom (low
temperature, 5K RPM) and go to the top. Left: P gain learned to be always 2. Middle:
I gain learned to be 0.5 in almost every state except when starting up (then it has
to be 2). Some chatter in the color exists for the I gain because the VAE is slightly
stochastic in reconstructing the I gain from a policy index. Right: TD3 learns a policy
that continuously changes the PID gains and has them larger (here I is shown).

1. The dataset is very challenging with its narrow trajectory, yet both the VAE
and the state clustering managed to learn something meaningful: not zeros
everywhere, or a constant action, and the learned policy makes sense from
a control perspective.

2. In this system, it actually makes sense to control it with a higher I (integral)
gain at the beginning, when errors are larger and may prevent the system
from starting. When the system is running in steady state, almost no control
has to be exerted on it, hence the low I gain. Low I gains are possible when
P is high, which is exactly what the agent learned (P is chosen to be 2 in a
choice of 0.5, 1 or 2).

3. While interpreting these results requires knowledge about the Brayton cycle,
we note that such interpretation is possible. The learned state partitioning
(Figure 5) shows the importance of good decisions at startup (many clusters
at the bottom of the figure) and matches the human partition of Brayton
Cycle regimes: startup, spinning up, and then steady state (the last state,
on top of the figure).

We also ran TD3+BC on the Brayton Cycle dataset and obtained a pol-
icy shown in Figure 4. TD3+BC learns Q-Values that are significantly over-
estimated (600+, with episodes in the dataset having a return of at most 400),
and a policy that changes the P and I gains often, in a continuous way. We ob-
serve no difference in the learned TD3 policy between the startup, spinning-up
and stady-state regimes.

6 Conclusion

We introduced an Offline RL method built from the ground up with the specific
needs of Offline RL in an industrial setting in mind. Our algorithm ensures that
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Fig. 5. State space partitioning learned for the Brayton cycle. Many states in the
beginning of the trajectories (correctly) indicate the importance of good control when
starting the system. Then, one state represents the spinning-up regime, and a final state
considers the steady-state system (towards the top). Not every state has a different
optimal action, hence this Figure shows more detail than Figure 4.

the learned policy does not execute actions not present in the dataset, and does
so by learning which behavior policy (auto-detected from the dataset) to execute
in which state, with changes in behavior policy only happening along a small
number of decision boundaries (for explainability).

Our experiments show that our method works with two easy-to-visualize
datasets of industrial relevance. One of them, Table, illustrates that very low-
quality behavior policy can be combined in an high-quality learned policy. The
Brayton cycle demonstrates that our method works even for dataset in which
only a small amount of states, in a 3D space (only 2 dimensions shown in our
figures), are visited. In both cases, our method learned a better policy than what
TD3+BC would.

These results show the promise of our from-the-ground-up method, and while
the method is not designed for, nor evaluated on the robotic Minari tasks, it
shows promise on closer-to-real-world problems, with existing control already
available on it, and a need for explainable learning outcomes.
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