
Towards a General Transfer Approach for
Policy-Value Networks

Dennis J.N.J. Soemers1, Vegard Mella2, Éric Piette3, Matthew Stephenson4,
Cameron Browne1, and Olivier Teytaud2

1 Department of Advanced Computing Sciences, Maastricht University
dennis.soemers@maastrichtuniversity.nl, cambolbro@gmail.com
2 Meta AI Research vegard.mella@gmail.com, oteytaud@meta.com

3 ICTEAM, UCLouvain eric.piette@uclouvain.be
4 College of Science and Engineering, Flinders University

matthew.stephenson@flinders.edu.au

This document is an encore abstract of the paper entitled “Towards a General
Transfer Approach for Policy-Value Networks” [7].

Introduction. AlphaGo Zero [6] and AlphaZero [5] have inspired a successful
line of research where policy-value networks—neural networks that have a policy
head to output probability distributions over actions for input states, as well as
a value head to output state value estimates—for game playing are trained from
self-play. Transfer learning [8, 2] may save computation time by transferring such
trained networks from some games to others, rather than training them from
scratch for every new game. However, prior work on transfer of policy and/or
value networks tends to permit very little, if any, variation in the shapes of state
or action spaces between the source and target domains. Leveraging the domain
specific language (DSL) in which Ludii [3] describes a wide variety of over 1000
distinct board games, we propose a simple baseline transfer approach that can
handle transfer between domains that have different state and action spaces.

Transfer Approach. We use fully convolutional architectures with global pool-
ing (for the value head) for their ability to handle differences in the spatial as-
pects of state and action spaces (i.e., changes in sizes or shapes of game boards)
[4, 9, 1]. Any other differences (e.g., channels encoding presence of piece types
that differ between source and target domains) are handled by heuristic rules
identifying approximate equivalence relations. These heuristic rules were hand-
crafted for the entire Ludii system (containing over 1000 board games, which is
easily extensible thanks to its DSL) as a whole. They were not handcrafted at
the level of individual (pairs of) games.

Experiments. We evaluate transfer performance for 150 pairs of variants of
games, each of which was used for two transfer experiments (one in either direc-
tion). Every pair consists of two variants of the same game (from a pool of nine
different board games), with differences in e.g. board sizes, board shapes, or win
conditions. We trained a model dedicated to every domain (i.e., game variant)
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(a) S with larger board sizes than T .
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(b) S with smaller board sizes than T .
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(c) Different board shapes for S and T .
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(d) Different win conditions for S and T .

Fig. 1. Win percentages of models trained on S and subsequently fine-tuned on T ,
against models trained only on T —evaluated on T . Every data point is a different
(S, T ) pair. The x-axis shows the win percentage of the transferred model without
fine-tuning (i.e., zero-shot performance).

for 20 hours on 8 GPUs and 80 CPU cores. We evaluated the playing strength of
every model when transferring it from the source domain S it was trained on, by
matching it up against the model that was trained directly on the target domain
T , both without any fine-tuning (zero-shot transfer), and with an additional 20
hours of fine-tuning time on T . In Fig. 1, data points that are further towards
the right indicate more successful zero-shot transfer (where anything that is sub-
stantially greater than 0% may be argued to be some degree of success). Results
below the black, dotted y = 50% line indicate negative transfer [10], whereas
those above it indicate beneficial transfer. Results below the red y = x line in-
dicate that fine-tuning degraded performance relative to the zero-shot transfer
performance, whereas results above that line indicate additional benefits from
fine-tuning. While there are cases of negative transfer, we also find many cases of
successful zero-shot transfer as well as fine-tuning, across a substantially larger
and more varied set of pairings of games than prior work.
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