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Abstract. How do large language models perform on Theory of Mind
tests typically used to evaluate human reasoning about intentions and
beliefs of others? In this abstract we present findings from our work
published in [8] to contribute to this evolving debate. We compare the
performance of 11 base and instruction-tuned LLMs against 73 children
aged 7-10 on standardized ToM tests, in more depth than earlier work.
Our results show that in non-trivial set-ups the majority of LLMs operate
below child level, with the exception of heavily instruction-tuned LLMs.

1 Introduction

Large language models (LLMs) are complex systems; even if all architecture,
data, and fine-tuning details are known (which is currently not the case for most
competitive models), it is difficult to assess their capabilities and performance
on a variety of tasks. Researchers from fields such as linguistics [17], psychology
[3,15, 18], mental health [10,14] and other fields [5, 16] have therefore started to
study LLMs as new, ‘alien’ entities, with their own intelligence, that needs to be
probed with experiments, an endeavor recently described as ‘machine psychology’
[11]. This not only advanced our understanding about LLM capabilities but also
provides a unique opportunity to shed light on questions surrounding human
intelligence [4, 6, 7].

In [8] we focus on determining to what degree LLMs demonstrate a capacity
for Theory of Mind (ToM), defined as the ability to work with beliefs, intentions,
desires, and other mental states, to anticipate and explain behavior in social
settings [1]. We first address the question of how LLMs perform on standardized,
language-based tasks used to assess ToM capabilities in humans. We extend
existing work in this area (see [8]), in four ways: (i) by testing 11 models for a
broader suite of capabilities relevant to ToM beyond just the dominant false-
belief paradigm, including non-literal language understanding and recursive
intentionality (A wants B to believe that C intends...); (ii) by using newly written
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Fig. 2: Performance on Sally-Anne tests for base-
LLMs (top row) and instruct-LLMs (bottom
mance (stars) of all mean row). Left column depicts performance on first-
test scores (dots) for chil- and second-order ToM (i.e. SA1 vs. SA2). Middle
dren (SA & SS younger chil- and right columns depict performance for SA1
dren, IM older children) and and SA2 over levels of deviation from the origi-
LLMs. nal test. Dashed lines indicate child performance
(n=37, age 7-8 years).

Fig.1: Grand mean perfor-

versions of standardized tests with varying degrees of deviation from the originals;
(iii) by including open questions besides closed ones; and (iv) by benchmarking
LLM performance against that of children aged 7-8 (n=37) and 9-10 (n=36) on
the same tasks.

2 Methodology

Here we list our tasks for testing LLMs and children at a high level, detailed
descriptions are in our paper [8]; all code, materials, and data are on OSF:
https://shorturl.at/FQR34. In contrast to some related work, we use a broad
set of ToM tests: the Sally-Anne test, first-order (SA1) [19], a classic false
belief test, and the Sally-Anne test, second-order (SA2), that targets the
belief of another person about another person; the Strange Stories test (SS)
[12], which covers scenarios of increasing complexity: a lie, pretend-play scenario,
practical joke, white lie, misunderstanding, sarcasm, and double bluff; and the
Imposing Memory test (IM) [13], which we adapted for children aged 7-10
from an unpublished version by Anneke Haddad and Robin Dunbar [9].

3 Results

Figure 1 shows that across all tests, averages for GPT-3.5 and GPT-4 exceed
performance of children. However, when zooming in on specific test results, a
more nuanced picture emerges (e.g., figure 2) showing that most LLMs struggle
with more complex settings (more results in [8]). We are now extending this work
towards multi-modal ToM scenarios, where stories are combined with images,
with interesting results in terms of accuracy and confidence, and some surprisingly
strong results on heavily obfuscated stories, underscoring the need for further
critical evaluation of ToM tests themselves in the context of LLMs [2].
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