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Abstract. Missing data is a common problem in data analysis pro-
cesses. Data may be missing due to data collection or recording, which
can occur in any field, such as healthcare, transportation, telecommu-
nications, biology, and more. Several machine learning models require
complete data. Therefore, imputation — the process of filling in missing
data — is typically the preferred method. Missing data imputation meth-
ods are useful for predictive model analysis by filling in the missing values
in the data. However, the impact of imputation techniques on model ex-
plainability is not yet known. In this study, we investigate the impact of
white-box and black-box imputation methods on the explainability of the
black-box Random Forest classification algorithm. Moreover, we applied
the glass box classification model that allows us to see the model’s deci-
sions in a transparent and understandable way, such as the Explainable
Boosting Machine, to compare performance differences. We conducted
an experiment with seven imputation methods, using three missing lev-
els (10%, 50%, and 70%) and three datasets. We investigated the effect
of the imputers on the feature importance of using SHAP values and ap-
plying surrogate models per imputed dataset. Summarize findings show
that striving for the best predictive model performance, best explain-
ability, or imputation performance leads to a different best choice for
the imputer. It is, therefore, important, contrary to common practice,
to regard the selection of imputer and classifier as a combined selection
problem and to explicitly choose what to optimize for.
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1 Introduction

Missing data is a critical issue across many fields, including healthcare, trans-
portation, and business, and it can significantly impact the performance of pre-
dictive models [2, 28]. Missing data can arise from problems with data collection
and human mistakes, such as lack of participation in research and surveys [19],
to technical and systemic issues, device malfunctions, and sensor failures [17].
Additionally, data may be missing simply because it does not exist, such as in
recommendation model systems [13]. Missing data can be divided into three cat-
egories: Missing Completely at Random (MCAR), Missing at Random (MAR),
and Missing Not at Random (MNAR) [26].
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Most machine learning algorithms cannot effectively handle datasets with
missing values. When the proportion of missing data is very small, deleting data
(items) with missing values can be a practical approach to enable smooth anal-
ysis [27]. Another common technique for handling missing values is imputation,
where plausible values are assigned to missing data before training predictive
models. A variety of imputation methods have been proposed, ranging from
statistical-based imputation methods such as mean and Multivariate Imputation
by Chained Equations (MICE) to machine learning and deep learning-based im-
putation methods such as k-nearest Neighbors (k-NN), Multilayer Perceptron
(MLP), Generative Adversarial Imputation Networks (GAIN). Some tree-based
algorithms, such as Classification and Regression Trees (CART) [4], eXtreme
Gradient Boosting (XGBoost) [5], and Light Gradient-Boosting Machine (Light-
GBM) [15] algorithms, can natively handle missing data.

Many machine learning algorithms are used for data analysis and continue to
be developed to meet the demands of increasingly complex data. In the pursuit
of predictive performance, achieving high model performance remains a fun-
damental goal within the machine learning community [22]. However, for the
decision-making mechanism to operate optimally, the quality of model explain-
ability is as important as the quality of model performance. These two areas are
considered to have a trade-off between each other [10].

In particular, Machine Learning (ML) algorithms tend to lack transparency,
making it challenging to understand how they operate internally. To solve this
opacity, several Explainable AI (XAI) methods and tools have been proposed [22].
They can be categorized as global (explaining the model) versus local (explaining
an individual prediction of the model) or as model-agnostic vs. model-specific
[20]. An alternative approach to overcome the explainability problem of black-
box models is to use a glass-box (e.g., Generalized Additive Model) or a white-
box (e.g., linear regression, decision tree) machine learning method.

Although imputation methods have been developed to handle missing data,
a research gap still exists regarding their impact on both the performance and
explainability of black-box models, as well as interpretable glass-box models.
To illustrate a real-world scenario, we can consider a pneumonia mortality risk
dataset [9] [6], where a heart rate in the range of 38-125 bpm is considered
normal. However, if we assume that some heart rate values are missing and
we impute the dataset using various imputation methods, it is crucial that the
normal range of 38-125 bpm remains intact. This is essential to ensure that
decision-support systems for healthcare professionals do not result in potentially
life-threatening consequences.

In this study, we study the effect of different families of imputation meth-
ods on predictive model explainability. We focus on the performance of model-
agnostic methods on global and local explainability. In our experiments, we use
as representatives for black-box, glass-box and white-box, Random Forest (RF),
Explainable Boosting Machine (EBM), and RF in combination with a decision
tree as a surrogate model for the explanations. To summarize, we seek answers
to the following questions:
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RQ1: How do different imputation methods affect the explainability of a
machine-learning model?

RQ2: Can high predictive performance be achieved using glass-box models
in the presence of missing data?

2 Related Work on Explainability and Imputation

In this section, related work is presented about the use of XAI methods in the
context of dealing with missing data.

Hans et al. [12] focus on human-readable explanations for imputation meth-
ods. They introduced data imputation techniques by considering diverse data
types (categorical, numeric, text, and date) along with their associated con-
straints.

Chen et al. [6] use EBM to provide users with insights into the missing data
problem and demonstrate potential hazards arising from different imputation
methods (mean, k-NN, MissForest) for several medical datasets. They illustrate
that their recommended interpretability approach can aid in understanding miss-
ing data mechanisms, such as MCAR or not, to understand the relationship be-
tween features and missingness. EBM is also used to predict missing values like
an imputer.

Cinquini et al. [8] proposed Local Interpretable Model Agnostic Explanations
(LIMEMV) with Missing Values approaches that can handle missing data using
the LIME method. They produced synthetic data by extracting statistical fea-
tures such as mean and standard deviation obtained from missing data, and they
used a surrogate tree model instead of a Lasso model. They tested the explain-
ability performance of the LIMEMV method using k-NN and MICE imputation
methods and obtained very competitive results.

Ahmad et al. [1] emphasized that imputation methods should be applied
carefully, especially in the presence of missing data that may occur in Criminal
Justice and patient safety systems. Their focus is on the fidelity of explanations.

Recent work by Vo et al. [34] focusing on regression discussed the XGBoost
model explainability with imputation and without. They used two datasets and
applied five different imputation methods (Mean, MICE, Conditional Distribution-
based Imputation of Missing Values with Regularization (DIMV), MissForest,
and SoftImpute) to data with missingness levels of 20%, 40%, 60%, and 80%.
They calculated mean square error (MSE) in Shapley values between the orig-
inal and imputed datasets. According to their results, model’s interpretability
can be strongly impacted by the imputation method selection. It has been ob-
served that the Shapley values are not robust and show variability in methods
with high imputation accuracy. The authors suggest that, when choosing an im-
puter, a choice should be made by taking into account the model explainability
criterion and dataset meta-features.

In the literature on explainability methods, it has often been observed that
either a single explainability method or an interpretable model like a glass-box
model is used in the presence of missing data. However, our approach goes a
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Fig. 1. Methodology

step further by integrating multiple methods—such as a surrogate model, SHAP
method, and glass-box model—thus providing a more comprehensive under-
standing of model behaviour with imputed datasets.

3 Methodology

We selected complete datasets to measure the performances of imputation meth-
ods and regression models. We use 80%/20% train/test split. Then, we induce
different missingness ratios in the training set.

An overview of the approach and pipeline for the experiments is given in
Figure 1.

Datasets: We use datasets from the healthcare and biology domain from [33] [16]
(see Table 1). Data selection was made by taking into account the number of
features.

The “Lung discrete” datasets were high-dimensional with few instances, while
the “Iris” and “Appendicitis” were lower-dimensional with more instances.

Dataset Features Instances Classes

Lung discrete [16] [24] 325 73 7
Iris [11] 4 150 3
Appendicitis [35] 7 106 2

Table 1. Summary of Datasets
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Missing Data Mechanisms: We experiment with the missing completely
at random (MCAR) data mechanism, where the probability of missing data is
the same for all features [31], and the missing not at random (MNAR) data
mechanism, where the probability of missing data may be caused by the missing
data itself [31]. Different missing rates of 10%, 50% and 70% were synthetically
generated. We simulate MCAR and MNAR settings as employed in [21]. MCAR
data mechanism, the probability of missing data is independent of observed
and non-observed values. To generate MCAR settings, we used a binary mask
∀ωij ∈ ΩMCAR, ωij ∈ {0, 1}n×d, a Bernoulli distribution, B(p), was used to
sample the mask ωij , so that ωij ∼ B(p), where p represents the likelihood that
a data point will be present.

The MAR data mechanism depends on the values of the observed variables.
Missing data is generated by keeping a certain proportion of observed data points
fixed (p_obs). A subset of the fully observed variables was selected, and missing
values were then introduced in the remaining variables using a logistic model.
ωij ∼ 1

1+e−⟨w,X⟩ . We set (p_obs)=0.5. For the MNAR data mechanism, the
missingness is conditional on the unobserved data, and to set MNAR, a logistic
model was employed similar to MAR, but instead of separating a certain per-
centage of the observed data, it used the entire dataset as inputs. The variables
were split into two groups: one set was used to determine missing probabilities
based on a logistic model, and the other was used as inputs for a logistic model,
following similar settings as employed in [21]. We applied the missing data mech-
anisms for the MCAR and MNAR in our experiments. The MAR mechanism
was not included in this study, since we considered the MAR assumption to be
less generalizable in real-world scenarios. Additionally, a similar reasoning for
excluding MAR was observed in a related study [2].

Imputation methods: We selected imputation methods based on different
levels of complexity, namely, the statistical methods mean imputation, matrix
completion (Soft Impute) [18] and ICE [32], machine learning methods k-NN [30]
and MissForest [29], and deep learning methods MLP [14] and GAIN [36]. For
mean imputation, missing values are replaced using the mean of each column.
For the ICE, MissForest, and MLP imputation methods, mean imputation was
used as an initial strategy.

Classification methods:

– Black-box representative: Random Forest.
As an example of a black-box model, we selected the Random Forest method [3],
Random forest is a type of ensemble model formed by combining multiple
decision trees. The bagging method in RF takes random samples from dif-
ferent data subsets and trains models (e.g., decision trees) independently on
these samples. The final prediction is made by taking the majority vote or
an average of these models.

– Glass-box representative: Explainable Boosting Machine.
To compare the performance of Random Forest on imputed data with a
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more interpretable model, the EBM method [23] was chosen. It belongs to
the Generalized Additive Model family and uses a tree-based and cyclic
approach [23].

– Black-box + surrogate representative: RF + Decision tree surrogate.
A surrogate model can be used to obtain the explainability of the black-box
model. We selected decision trees [4] for the surrogate. First, we trained a
Random Forest black-box model and obtained its predictions for full and
imputed datasets. We trained a surrogate decision tree model using these
black-box model predictions Then we measured how successfully the black-
box model’s predictions were reproduced by the surrogate model [7].

We applied the imputation methods after splitting to prevent data leakage. All
experiments were performed independently 5 times using different random seeds.

Evaluation Metrics: We used root mean squared error (RMSE) metrics to
evaluate imputers and model explainability and accuracy for comparison of the
performance of classifiers. The RMSE for imputers is calculated only between
the imputed (completed) values and the original data points. We calculated the
RMSE of the SHAP values to quantify the difference in explanations between
the original data and the imputed data across all samples (n).

4 Results

Variation in black box model explainability We show the RMSE of SHAP
values, denoted as SHAPrmse, in Figure 2 for the Iris, Appendicitis, and Lung
discrete datasets. As the missing level increases, the SHAPrmse values increase
in all datasets. For the MCAR and MNAR missing data mechanisms, only in the
Iris data set, the SHAPrmse values for the data imputed with the GAIN imputer
are smaller at a 70% missingness level compared to 50%. We observe that for the
MNAR missing data mechanism, the mean imputer leads to the biggest change
in model explanation. The GAIN imputer is the second most influential in terms
of changing the explanation of the model, except for the high-dimensional lung
discrete dataset. For the MNAR missing data mechanism, most SHAPrmse values
are higher in the small-sized Iris dataset compared to MCAR, indicating that
the type of missing data mechanism is important for this data set. The GAIN
imputer performed better for the lung discrete dataset, especially for the MCAR
data mechanism. It appears that the low SHAPrmse values were achieved with
the larger dataset.

Comparison of black-box and glass-box model performance First, we
conducted a performance comparison for imputation methods and accuracies
of imputed datasets for the predictive models Random Forest and Explainable
Boosting Machine to analyze their efficacy under a low (e.g., 10%), medium (e.g.,
50%), and high (e.g., 70%) missingness level. The results are in Table 2 and
3. The two tables compare the results of low-dimensional vs. high-dimensional
data sets. The imputer demonstrating the best performance varies according
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Fig. 2. Average RMSE of SHAP values for the Iris (top), Appendicitis (middle) and
Lung discrete (bottom) datasets and MCAR (left) and MNAR (right) missing mecha-
nisms. Experiments run 5 times. Low SHAPrmse is better.

to the missing levels. For the low missing level, the mean imputer achieved
the best performance. At the medium and high missing levels, the Soft Impute
method showed the best results. It can be observed that the best imputation
methods based on RMSE values do not always improve the classification models’
performances for all missing levels. Datasets imputed with k-NN showed the
best performance in the classification model for low missing levels. Datasets
imputed with MLP imputer showed the highest accuracy presence of a high
missing level for black and glass box models. For a high-dimensional dataset,
k-NN was the best imputer at a low level of missing data, while Soft Impute
showed the best imputation performance at higher missing rates, such as 50%
and 70%. Compared to small-dimensional data, high-dimensional data showed
lower performance in both black box and glass box classification models. The
performance of the black box model exceeds the glass box model in all missing
levels.

Surrogate Model Performance In Figure 3, We compare the performance of
the surrogate model trained on both imputed and original datasets, as well as
across low-dimensional and high-dimensional datasets. While the performance
of the surrogate model is above 90% in small datasets, the model’s performance
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Table 2. Imputation results (RMSE) and classification model performances (ACC)
across imputed low-dimensional datasets (Iris+Appendicitis) over three missing lev-
els using MCAR data mechanisms for black-box RF (ACCBB) and glass-box EBM
(ACCGB). Lower RMSE and higher accuracy (ACC) are better. RMSE and ACC
results are presented with mean and standard deviation. Bold numbers represent the
best performer per missing level. Low RMSE and high ACCs are better. Experiments
were repeated 5 times.

Data 10 50

RMSE ↓ ACCBB ↑ ACCGB ↑ RMSE ↓ ACCBB ↑ ACCGB ↑

MEAN 2.28±1.88 0.92±0.08 0.92±0.05 2.51±1.55 0.89±0.05 0.88±0.07
ICE 2.45±1.65 0.92±0.06 0.90±0.06 2.36±1.68 0.89±0.04 0.89±0.06
k-NN 2.36±1.73 0.93±0.05 0.91±0.06 2.28±1.74 0.89±0.06 0.88±0.05

MISSFOREST 2.43±1.68 0.92±0.05 0.90±0.06 2.44±1.65 0.89±0.05 0.89±0.07
MLP 2.43±1.66 0.91±0.08 0.91±0.06 2.51±1.55 0.90±0.07 0.88±0.07
GAIN 2.38±1.67 0.92±0.06 0.91±0.05 2.36±1.65 0.88±0.08 0.89±0.07

SoftImpute 2.37±1.72 0.92±0.08 0.90±0.07 2.25±1.76 0.89±0.05 0.88±0.05

Data 70

RMSE ↓ ACCBB↑ ACCGB ↑

MEAN 2.23±1.81 0.86±0.08 0.89±0.04
ICE 2.34±1.68 0.84±0.10 0.86±0.09
k-NN 2.24±1.75 0.86±0.08 0.87±0.06

MISSFOREST 2.42±1.60 0.87±0.07 0.86±0.05
MLP 2.72±1.26 0.90±0.04 0.91±0.05
GAIN 2.35±1.63 0.84±0.07 0.84±0.06

SoftImpute 2.22±1.81 0.82±0.05 0.85±0.07

is lower in large data sets per data mechanism. It can be said that the surrogate
model matches the explanation for the original data with better performance for
small-sized data sets. ICE and MLP imputer show similar results for MCAR and
MNAR missing data mechanisms. The surrogate model performance of data com-
pleted with the mean imputer shows lower results for both MCAR and MNAR
data mechanisms. The performance of models trained on datasets imputed with
GAIN imputer increased for the MCAR data mechanism. In Figure 3, the bot-
tom section shows the surrogate model performance for the lung discrete dataset.
The black-box model appears not to mimic the behaviour very well, even without
missing data, so it seems that the surrogate model is not sufficient in interpreting
the black-box model. When lung discrete datasets completed with k-NN imputa-
tion are trained with a surrogate model, they show better results for the MCAR
data mechanism, while datasets filled with ICE imputation performed the best
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Table 3. Imputation results (RMSE) and classification model performances (ACC)
on imputed high-dimensional dataset (Lung discrete) over three missing levels using
MCAR data mechanisms for black-box Random forest (ACCBB) and glass-box model
EBM (ACCGB). Lower RMSE and higher accuracy (ACC) are better. RMSE and
ACC results are presented with mean and standard deviation. Bold numbers represent
the best performer per missing level. Experiments run 5 times.

Data 10 50

RMSE ↓ ACCBB ↑ ACCGB ↑ RMSE ↓ ACCBB ↑ ACCGB ↑

MEAN 1.60±0.01 0.83±0.08 0.72±0.12 1.60±0.01 0.76±0.10 0.67±0.08
ICE 1.33±0.07 0.85±0.13 0.77±0.11 1.56±0.02 0.71±0.09 0.68±0.09
k-NN 1.30±0.01 0.85±0.06 0.76±0.10 1.36±0.02 0.79±0.09 0.73±0.11
MLP 1.50±0.04 0.83±0.04 0.77±0.11 1.66±0.04 0.77±0.13 0.71±0.10
GAIN 1.31±0.03 0.81±0.06 0.77±0.10 1.46±0.02 0.73±0.08 0.69±0.11

Soft Impute 1.25±0.02 0.84± 0.08 0.79±0.11 1.34±0.01 0.79±0.09 0.73±0.11

Data 70

RMSE ↓ ACCBB↑ ACCGB ↑

MEAN 1.61±0.01 0.61±0.12 0.61±0.12
ICE 1.60±0.03 0.65±0.11 0.63±0.12
k-NN 1.43±0.01 0.72±0.06 0.65±0.09
MLP 1.68±0.05 0.61±0.09 0.59±0.10
GAIN 1.56±0.02 0.63±0.08 0.61±0.12

Soft Impute 1.43±0.02 0.69±0.06 0.68±0.09

performance compared to other imputation techniques under the MNAR data
mechanism.

5 Limitations and Future Work

This study investigates how imputation affects a black-box model’s explainabil-
ity when employing datasets that have missing values. Furthermore, we chose the
EBM as the interpretable model and compared its results with those of the black-
box model for imputed datasets. We conducted our experiments based on two
small and one high-dimensional dataset, using seven different imputers (Mean,
k-NN, ICE, MissForest, MLP, GAIN, and Soft impute) and three missing data
levels (10%, 50%, 70%). The missing data were simulated according to MCAR
and MNAR missing data mechanisms. Since the model explainability and miss-
ing data issues have broad and multidisciplinary research areas, this study has
limitations, particularly regarding dataset selection and the choice of imputation
methods and black-box models. Future work will focus on expanding to further
strengthen and generalize our findings. This includes different datasets (char-
acteristics such as statistical and information-theoretic), dataset types (image
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Fig. 3. Average accuracy of surrogate models per imputer for low-dimensional datasets
Iris and Appendicitis (top) and high-dimensional dataset Lung discrete (bottom). Ex-
periments run 5 times for MCAR (left) and MNAR (right) missing data mechanisms.
80-20 train-test split. The red line represents the original test dataset surrogate model.

and text-domain datasets), expansion of the data preprocessing pipeline (more
imputers based on deep learning) and other explainability values (LIME [25]
method). Moreover, the feature ranking based on the SHAP method can be an-
alyzed before and after imputation to observe whether there is any change in
the ranking. Since there is a time constraint of 60 minutes for imputation, the
lung discrete dataset contains a large number of features; therefore, the Miss-
Forest imputer was very costly in terms of time, so the MissForest imputation
was removed from the analysis for this dataset.

6 Conclusion

In this study, two research questions were formulated. The first research ques-
tion (RQ1) was: How do different imputation methods affect the explainability
of a machine learning model? Model explainability after imputation was worse
in low-dimensional data (See Figure 2). There is no single best imputer for this
analysis, but it can be said that the mean imputer changed the black box model
explainability in most cases. It has been observed that simple imputation meth-
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ods such as Mean imputer harm the explainability of the model, especially in
small datasets.

The surrogate model was trained using the decision tree algorithm with the
predictions of the black-box model. The GAIN and ICE imputers were the closest
to the performance of the original surrogate model under the MCAR and MNAR
missing data mechanisms for the low-dimensional dataset. It was observed that
the surrogate model trained on high-dimensional data could not simulate very
well the black box model in both the original data set and the imputed datasets.

The second research question (RQ2) was: Can high predictive performance
be achieved using glass-box models in the presence of missing data? The Random
Forest black box model performed better, especially for high-dimensional data
(see Table 3). However, it has been noted that the glass-box model outperforms
the black-box model at a 70% missing data level for low-dimensional datasets
(see Table 2). This indicates that the number of features and the mechanisms of
missing data influence model performance.

To sum up our findings, imputation affects model explainability and accuracy
based on data characteristics, such as missing level, number of features, and so
on, so the imputer and classifier selection problem should be considered as a
combined selection problem, determining what to optimize for and then making
an optimal choice.
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