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Abstract. Planning and scheduling remains among Artificial Intelli-
gence’s biggest challenges. Especially, in real-world scenarios, when mul-
tiple types of constraints need to be met: available resources, labor law
and regulations, and people’s preferences. To accommodate these con-
straints and generate tractable, optimal schedules, we propose an Integer
Linear Programming model (ILP) that handles rostering as an assign-
ment problem. Instead of duties, this uses duty templates to generate
cyclic rosters, i) unveiling redundancy in the set of constraints, ii) real-
izing speed improvement by removing symmetries in the solution space,
and iii) allowing an integrated approach to rostering. The question posed
by Netherlands Railways (NS) whether it is possible to create feasible
rosters using those duty templates is answered positively by solving the
ILP’s feasibility problem. However, an NS roster expert considered the
solutions unattractive. Therefore, we introduce soft constraints, moving
from a feasibility to an optimization problem. The updated model de-
livered explainable, tractable, optimally balanced workload, and more
attractive schedules in a complex, real-world scenario.

Keywords: Planning and Scheduling · Optimization · Constraint-Based
Modelling · Real-world · Personnel

1 Introduction

Starting with their birth, the history of Artificial Intelligence (AI) and Opera-
tions Research (OR) has always been intertwined [13, 18]. However, throughout
the years their relation has ranged from close to distant [15, 23]. On the one
hand, AI and OR share some of their main challenges [15], such as i) planning
and scheduling, ii) search iii) heuristics, iv) constraint-based reasoning, and v)
machine learning. Moreover, both AI and OR study complex problems in vari-
ous domains, such as healthcare, transport, and energy. On the other hand, AI
and OR have essential differences [15]. OR delivers tractable models (e.g., using
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Mixed Integer Program (MIP) ). For well-defined problem spaces, it can deliver
optimal solutions. However, the models are rigid, often lacking expressive power.
In contrast, AI embraces a variety of rich knowledge representations, which can
function at different levels, ranging from symbolic to semantic (e.g., deep learn-
ing). However, AI ’s can deliver intractable, black box models [20]. Interestingly,
AI and OR have to potential counter each others weaknesses [13,15,23]. In other
words, it seems feasible that AI helps OR and OR helps AI . Hence, a joint inte-
gral, overarching framework remains worth exploring [12, 14]. This is especially
the case for real world problems, such as planning and scheduling, which require
the best of both worlds: models need to be both expressive and explainable [20],
while delivering (near) optimal solutions. Par excellence and in contrast with reg-
ular planning challenges, this is the case with personnel (or: crew) scheduling,
as this directly impacts people’s experience.

On the one hand, AI helps OR : Bengio et al. [5] survey the recent attempts
at leveraging machine learning to solve combinatorial optimization problems.
The authors advocate for pushing further the integration of machine learning
and combinatorial optimization. In more recent years, AI techniques are used
to further improve the MIP solvers’ branch-and-bound algorithm, as is surveyed
recently by Scavuzzo et al. [21]. On the other hand, OR helps AI : In 1999,
Vossen et al. [25] already explored the use of Integer Linear Program (ILP) to
solve AI planning problems. Tsay et al. [24] introduce a class of mixed-integer
formulations for trained ReLU neural networks and use it to find adversarial
examples. Recently, Aghaei et al. [4] proposed mixed-integer optimization-based
techniques for learning optimal binary classification trees. So, AI and OR ’s
combined strengths shows a promising area of research in AI ’s current era,
where model performance alone is not considered sufficient. Also aspects such as
user experience [7] and fairness [7,19] need to be considered next to tractability,
explainability [22], and computational complexity [8].

In this article, we study one of AI and OR ’s main challenges: planning and
scheduling, which is widely studied across several domains. One of the more
prominent application areas of planning and scheduling is the scheduling of per-
sonnel. Due to the increased importance of employee preferences and satisfac-
tion, this challenge’s complexity has significantly grown over the years. Van den
Bergh et al. [6] described that the interest in personnel scheduling problems can
be attributed to economic considerations, as reducing labor costs is beneficial
for many companies. Additionally, including personnel preferences in the crew
scheduling problem not only optimizes services, it also leads to a higher job sat-
isfaction and a lower level of employee sickness. Hanne et al. [16] described this
as “happy staff means happy customers”.

To give insight in real-world crew scheduling’s complexity, we consider the
crew planning process at Netherlands Railways (NS). Here, crew planning is
currently split up into two phases:

1. scheduling : The total set of duties (i.e., sequences of tasks corresponding to
a day of work for a single crew member) for a whole year are created for
each crew base simultaneously [2].
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2. rostering : At each crew base, annual rosters are created from the assigned set
of duties. A roster specifies, for each crew member and day, whether the crew
member works on that day, and if so, which duty is to be performed [19].

To arrive at a fair division of the preferred (sweet) and less preferred (sour)
work among the different crew bases, so-called sharing sweet and sour -rules (in
Dutch: lusten en lasten delen) are taken into account in the scheduling phase [3].
Decision Support Systems have been developed to at least partially automate the
rostering process (e.g., see [7, 17]). However, up to this date these systems have
not been successfully implemented in real-world practice. Hence, the rostering
phase is still carried out manually and is split up in three parts.

Despite the sharing sweet and sour -rules, a fair assignment and realizing
working times comparable to the annual roster remained challenging. Conse-
quently, NS explores both alternative and complementary strategies. The most
prominent one being a new crew planning process based on duty templates. Such
a duty template is characterized by a day and time window in which an employee
can be scheduled to work, and acts as a placeholder for a duty in a roster [19].
In the scheduling phase, these duty templates will be generated instead of du-
ties themselves. In the rostering phase, per crew base, these templates together
with days off must be formed into cyclic annual template-based rosters. A week
before operation, the actual duties and time of work are published to the crew
members, guaranteed to be within the template rosters. Because the duties are
generated close to the day of operation, they can be determined more accurately
and less rescheduling needs to be done afterwards. The generation of duties is
based on the template rosters and, thus, can take into account crew members’
qualifications and individual scores on the sharing sweet and sour -rules [19].
When considering the process based on duty templates, NS’ main question is:
Using templates instead of duties, is it feasible to create rosters obeying all rules?

Next, we elaborate on the NS rostering problem and the notation used. Our
cyclic crew rostering model using templates is presented in Section 3. In Section 4
this model is validated on real-life instances the NS provided, providing us with
an answer to the question posed above. We close this paper with Section 5,
which provides a discussion, reflecting on the work presented. Additionally, an
Appendix defining functions used in Section 3 is presented.

2 Problem description and notation

Using templates corresponding to a crew base at NS, an instance of the Cyclic
Crew Rostering Problem, is given by:

– For each template b ∈ B:
• start time Sb and end time Eb in minutes (not given modulo 1440)
• Kb ∈ {0, 1} denotes whether Eb > 1560
• Mb ∈ {0, 1} denotes whether Eb > 1440
• Nb ∈ {0, 1} denotes whether b ∈ B is a night template (fits a night duty)
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• Furthermore, each b ∈ B is part of exactly one of the subsets Bj (tem-
plates that need to be assigned to day j)

– Each crew member i ∈ C is part of exactly one of the roster groups C1, C2, ..., Cg.
– For each roster group c, the number of S and WTV days per |Cc| weeks are

given by sc and wtvc.

With three types of rest days:

– R: normal rest days;
– WTV : reduction in working hours (in Dutch: werktijdverkorting); and
– S: compensation days for irregular work and part time work,

which together make the set D = {R,WTV, S}. We can represent a roster for
a single crew base as a matrix, as is shown in Figure 1. As the roster is cyclic,
members of a single roster group rotate through the same roster. Rosters have to
comply to rules, specified as hard constraints, see Table 1. The set of templates
B needs to be assigned to the cells of the matrix, including appropriate R, WTV ,
and S days, in a way that satisfies these rules. Satisfying rules when considering
templates means that each duty that can possibly be the content of a template
respects the rules. Note that less roster rules need to be considered compared to
considering duties, as the templates have no content.

Fig. 1: Example of a roster for a single crew base. Rows i ∈ C represent the crew
members, columns j ∈ W = {1, 2, 3, 4, 5, 6, 7} represent weekdays: Monday to
Sunday. Lines corresponding to a single roster group are the subrosters, which
are cyclic: the last cell of a subroster is succeeded by the first cell of the subroster.

We also consider 4 types of roster groups: mix, early, late and elderly. Each
type obeys additional rules regarding working times (e.g., rosters of type early
contain no duties ending after 18.00). These additional group-based constraints
can be incorporated into the model presented in the next section. Furthermore,
we assume no template starts before 04.00.
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Table 1: Roster rules, according to the NS collective labour agreement [1]

Daily rest time ≥ 12 hours (uninterrupted)
Weekly rest time Every period of 14× 24 hours needs to contain an uninterrupted rest

period of 72 hours or 2× 36 hours each.
Types of rest days A WTV day covers a calendar day that starts not later than 02.00.

Each calendar week is assigned two R days on average and needs to
have at least one R day.
R and S days contain ≥ 30 hours when succeeding a duty,
otherwise ≥ 24 hours.

Consecutive duties ≤ 7
Nigth duty Rest time after a duty that ends after 02.00 needs to be ≥ 14 hours.

After series of ≥ 3 night duties, a rest period of ≥ 46 hours is mandatory.
Red Weekend A period of ≥ 60 hours, which covers Saturday 00:00 until Monday 04:00.

Present at least one out of every three weekends.

3 Modelling

To answer the feasibility question posed by NS for cyclic crew rostering, we
adopted an ILP , without objective at first. Par excellence, an ILP can generate
tractable, rule-based models. Rules such as those in the collective NS labor
agreement (see Table 1) can be formulated as hard constraints, allowing and
ILP to provide exact solutions. In turn, this allows to answer our feasibility
question. Next, we formulate the assignment problem, propose a naive model,
and shrink its solution space.The proposed model assigns days off and templates
to the roster of a crew base simultaneously. This integrates all three parts of the
current roster procedure at NS, contrary to earlier work (e.g., [17], [7]).

3.1 Mathematical formulation

Table 2 provides the ILP model’s binary variables and its helper functions, which
are defined the Appendix. We can get the separate elements, either row or col-
umn, corresponding to h(i, j) by writing h1(i, j) (row) or h2(i, j) (column). Fur-
ther, we write xh(i,j) = xh1(i,j)h2(i,j) and h1(i, j) = h(i, j).

The following constraint guarantees that a cell cannot be empty:∑
b∈Bj

xb
i +

∑
d∈D

xd
ij = 1 ∀(i, j) ∈ C ×W, (1)

as it assigns either a template or a rest day.
Moreover, each template is assigned to exactly one row:∑

i∈C

xb
i = 1 ∀j ∈ W, ∀b ∈ Bj , (2)

taking into account that each template is already assigned to a certain weekday.
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Table 2: Variables and helper functions

xb
i Equals 1 if template b is assigned to row i, and 0 otherwise.

xd
ij Equals 1 if rest day d is assigned to cell (i, j), and 0 otherwise.

mij Can be 1 if a rest period of at least 36 hours starts after the template on (i, j),
if not it equals 0. If no template is assigned to (i, j), it also equals 0.

pij Can be 1 if a rest period of at least 72 hours starts after the template on (i, j),
if not it equals 0. If no template is assigned to (i, j), it also equals 0.

zaij Equals 1 if all cells h(i, j) up to and including ha(i, j) are assigned a type from
{R,S} and surrounding cells (i, j) and ha+1(i, j) are not, and 0 otherwise.

vij Can be 1 if a rest period of at least 46 hours starts after the template on h2(i, j),
if not it equals 0.

RWi Can be 1 if row i contains a Red Weekend (RW), if not it equals 0.
hn(i1, j1) Returns cell (i2, j2) taking place n days after (or in the case of

n = −1, the day before) (i1, j1) in the same subroster.
t((i1, j1), (i2, j2)) Returns the time in minutes between the end of the template on cell

(i1, j1) end the beginning of the template on cell (i2, j2), or returns
large enough (specified in Appendix) number if one of these cells is
not assigned a template.

tU ((i1, j1), (i2, j2)) Modified version of t((i1, j1), (i2, j2)) where we only consider
templates b ∈ B on (i1, j1) which have a certain property indicated by
the binary variable Ub, otherwise it returns a large enough number.

The number of WTV and S days per roster group is fixed by

∑
i∈Cc

∑
j∈W

xS
ij = sc and

∑
i∈Cc

∑
j∈W

xWTV
ij = wtvc ∀c = 1, ..., g. (3)

Consecutive templates have at least 720 minutes between them:

t((i, j), h(i, j)) ≥ 720 ∀(i, j) ∈ C ×W. (4)

Note that a rest period of ≥ 36 (72) hours corresponds to either 1 (2) type
of rest day(s) with sufficient rest time between the templates around this rest
day(s) or ≥ 2 (3) rest days. Then, if the considered periods do not correspond
to rest of respectively 2160 or 4320 minutes at least, mij = 0 and pij = 0 are
fixed by the following constraints ∀(i, j) ∈ C ×W :

∑
b∈Bj

xb
i ≥ mij (5)

∑
d∈D

xd
h(i,j) ≥ mij (6)

t((i, j), h2(i, j)) ≥ 2160mij (7)
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b∈Bj

xb
i ≥ pij (8)

∑
d∈D

xd
h(i,j) ≥ pij (9)∑

d∈D

xd
h2(i,j) ≥ pij (10)

t((i, j), h3(i, j)) ≥ 4320pij . (11)

Note that pij = 1 implies mij = 1, as a rest period of 36 hours starting at (i, j)
is also contained in the period of 72 hours. Then,

12∑
n=−1

mhn(i,j) +

11∑
n=−1

phn(i,j) ≥ 2 ∀(i, j) ∈ C ×W, (12)

secures that each period of 14 days contains either 2 rest periods of ≥ 36 hours
or 1 of ≥ 72 hours. Note that this formulation allows the rest period to not be
fully contained in the considered horizon: it allows a rest period to cross the
boundaries of the considered period of 14 days, which loosens the rule stated.

With respect to rest days, we define the following constraints. If a template
ends after 02.00, the following holds:

1−
∑
b∈Bj

xb
iKb ≥ xWTV

h(i,j) ∀(i, j) ∈ C ×W, (13)

which forbids assigning a WTV day after. Next, to secure an average of two rest
days per week, we define:∑

i∈Cc

∑
j∈W

xR
ij ≥ 2|Cc| ∀c = 1, ..., g, (14)

which defined each roster group c having at least 2|Cc| R days in their subroster.
Last, the mandatory 1 rest day per week is modelled as:∑

j∈W

xR
ij ≥ 1 ∀i ∈ C. (15)

Further, let A be the set corresponding to possible number of consecutive R,S
days and assume A = {1, 2, 3, 4, 5, 6, 7}. Then, we set zaij = 1 in (16) if we have i)
all cells h(i, j) up to and including ha(i, j) are assigned a type from {R,S} and
ii) surrounding cells (i, j) and ha+1(i, j) are not assigned a type from {R,S}:

zaij ≥
a∑

n=1

∑
d∈{R,S}

xd
hn(i,j) − a+ 1−

∑
d∈{R,S}

xd
ij (16)

−
∑

d∈{R,S}

xd
ha+1(i,j) ∀(i, j) ∈ C ×W, ∀a ∈ A.
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Then, the rules corresponding to norms of R,S are covered in:

tWTV ((i, j), ha+1(i, j)) ≥ zaij

(
360 + 1440a

)
(17)

−360xWTV
ij ∀(i, j) ∈ C ×W, ∀a ∈ A,

where we check whether or not the surrounding cells are assigned templates or
WTV days, which cover enough rest time only if the corresponding zaij = 1.
If a WTV day precedes an R,S day, this R,S needs to add 24 hours to the
rest period, corrected by Equation (17)’s last term, starting at the end of WTV
(00.00). If a WTV day succeeds an R,S day, the rest period corresponding to
R,S ends at 02.00. This is taken into account in tWTV , see Appendix.

To guarantee that each 8 day period contains ≥ 1 day of type D, we model:

7∑
n=0

∑
d∈D

xd
hn(i,j) ≥ 1 ∀(i, j) ∈ C ×W. (18)

Moreover, when a template ends after 02.00, we define

tK((i, j), h(i, j)) ≥ 840 ∀(i, j) ∈ C ×W, (19)

which guarantees ≥ 14 hours rest time. We make sure each series of ≥ 3 night
templates is followed by ≥ 46 hours rest by

2∑
n=0

∑
b∈Bhn

2 (i,j)

xb
hn
1 (i,j)

Nb ≤ 2 +
∑
d∈D

xd
h3(i,j) (20)

+
∑

b∈B
h3
2(i,j)

xb
h3
1(i,j)

Nb ∀(i, j) ∈ C ×W,

which models that each series of three or more night templates is succeeded by
either another night template or a type of rest day, and( 2∑

n=0

∑
b∈Bhn

2 (i,j)

xb
hn
1 (i,j)

Nb

)
+

∑
d∈D

xd
h3(i,j) ≤ 3 + vij ∀(i, j) ∈ C ×W, (21)

which models whenever a type of rest day is chosen in the previous case, the rest
period needs to contain ≥ 46 hours together with

t(h2(i, j), h4(i, j)) ≥ 2760vij ∀(i, j) ∈ C ×W. (22)

Note that adding
∑

d∈D xd
h3(i,j) ≥ vij is redundant as vij = 0 is then already set

by (21). Further, it may happen that out of 4 consecutively assigned templates,
when generating duties later on in the process, the first 3 templates are assigned
a night duty and the 4th one a late duty, while this is not allowed. We assume
that this issue is prevented by then assigning the 4th template a night duty.
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At least 1 Red Weekend needs to occur every 3 weeks, which is modelled as∑
i∈C3lc

RWi ≥ 1 ∀c = 1, ..., g,∀l ∈ Cc, (23)

with C3lc being the set of 3 consecutive rows corresponding to roster group c
starting from row l and

t((i, 5), h(i, 7)) ≥ 3600RWi ∀i ∈ C (24)

setting RWi = 0 if the time between the templates on Friday and Monday does
not exceed 3600 minutes. As advised by planners of NS, Saturday and Sunday
of a Red Weekend need to be days of type R:

xR
ij ≥ RWi ∀i ∈ C, j ∈ {6, 7}, (25)

which sets RWi = 0 whenever at least one of those days is not assigned R. The
last constraint ∑

b∈B5

xb
iMb ≤ 1−RWi ∀i ∈ C (26)

fixes RWi = 0 if b ∈ B5 with end time after 00.00 is assigned to Friday of row i.

3.2 Reducing complexity by breaking symmetries

To determine the model’s number of constraints and variables, we assume |W |,
|D| and |A| are all constants. Then, the number of decision variables corresponds
to O(|B||C|). As |B| =

∑
j∈W |Bj | ≤ 7maxj∈W |Bj | and maxj∈W |Bj | ≤ |C|,

the number of decision variables for a feasible instance is given by O(|C|2).
Furthermore, the number of constraints is given by O(|C|). Hence, we conclude
that the model size grows with the number of crew base’s members.

A large number of model solutions are symmetric, which increases the com-
plexity of the model. As the subrosters corresponding to a single roster group
are cyclic, we can move up each row by one and obtain the same roster. How-
ever, regular, naive branch and cut algorithms ignore this and spend time on
unnecessary branches, which result in identical solutions. To decrease the naive
solution space, caused by these symmetry issues, we introduce extra constraints.
For each roster group c = 1, ..., g, we propose the following:

RWC1
c
= 1, (27)

which forces that each subroster’s first row is assigned a Red Weekend. Here, C1
c

is the smallest element of Cc: the first row corresponding to roster group c. As
at least one out of every three weekends is a Red Weekend (see Table 1), we can
remove ≤ 2

3 of the symmetric solutions corresponding to moving up each row
within a single subroster.
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Table 3: Characteristics of the crew bases used.

Crew Base #Templates per week #Crew members #Roster groups
Enkhuizen 147 34 2
Nijmegen 342 82 8
Utrecht 896 218 25

Table 4: Model results of the feasibility problem. In italics, the results after
including symmetry breaking are given.

Crew Base #Variables #Constraints #Nodes Time (s)
Enkhuizen 8126 7597 7599 2169 1081 30 22
Nijmegen 35588 28506 28514 6179 7403 268 211
Utrecht 215384 111887 111912 19263 14969 11791 5758

4 Real-world validation

The NS provided real-world data to answer the feasibility question posed. Here,
we present how this data was used to answer this question and validate the
model. To solve the ILP for the NS rosters, the MIP solver IBM ILOG CPLEX
Optimization Studio v22.1.1 was used, using default parameter settings.

4.1 Feasibility: Aligning templates

The NS templates used as input are generated for train drivers per crew base
for a whole week. We have taken Dutch crew bases of varying sizes: Enkhuizen,
Nijmegen, and Utrecht (see Table 3), which are both representative and feasible,
with Utrecht having the Netherlands’ largest crew base.

To determine the feasibility of making rosters using templates instead of
duties, we verified whether or not all templates can be assigned to the rosters.
As the requirements were modelled as hard constraints in an ILP , its solutions
found are guaranteed to be feasible.

Table 4 shows that all instances are solved. So, it is indeed possible to gener-
ate feasible rosters, using templates instead of duties. Following Section 3.2, the
model size (i.e., the number of variables and constraints) grows with the num-
ber of crew members in the instance. This also holds for the number of nodes
explored in the branch and bound tree and the time needed to solve the model.
Considering the resulting rosters, a striking feature is that the days off are not
evenly spread over the weeks (see Figure 2).

4.2 Adding symmetry breaking constraints

To prevent the solver from searching unnecessary branches, resulting in identical
solutions, we added symmetry breaking constraints to our model (see (27)). This
reduced the computation time for all instances, up to even 50% for the largest
instance, see Table 4. Given the reduced computation time for all instances, we
adopt the symmetry breaking constraints in our model.
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Mo TuWe Th Fr Sa Su Total
1 × × × × 4
2 × × × × × 5
3 × × × 3
4 × × × × 4
5 × × × × × 5
6 × × 2

Mo TuWe Th Fr Sa Su Total
1 × × × × 4
2 × × × 3
3 × × × × 4
4 × × × × 4
5 × × × × 4
6 × × × × 4

Fig. 2: Roster for a group of 6 members working part time at crew base Utrecht
as solution to the feasibility problem (left) and the optimization problem (right).
The crosses indicate the assignment of templates.

4.3 Balancing Workload

For validation of the rosters created in the experiments above, we asked a roster
expert within NS to evaluate their quality. As the manually made rosters used
currently contain duties instead of templates (i.e., content and working times
instead of only placeholders for working times), we cannot directly compare the
rosters currently in use to the ones generated here in terms of quality. From this
evaluation, it turned out that the rosters realized were judged as unattractive
to crew members, as among other things the workload is not well balanced over
the weeks. From this qualitative feedback, we propose to adjust the model in
the following manner to obtain more attractive rosters: We add soft constraints,
which allows constraints to be violated against a certain cost, and aim to spread
templates more evenly over the weeks. Consequently, next to finding a solution
that meets all requirements (i.e., a feasibility problem), our model can be ap-
proached as an optimization problem (i.e., contains an objective). To realize this,
we introduce

min
∑
i∈C

wi (28)

wi ≥ 2

∑
j∈W

∑
b∈Bj

xb
i − Lc

 ∀c = 1, ..., g, ∀i ∈ Cc (29)

wi ≥ 0, integer ∀i ∈ C, (30)

which allows to balance the workload over the weeks. Here, Lc is the desired
average number of templates per week for roster group c: a 32 and 36 hour
contract corresponds to respectively Lc = 4 and Lc = 4.5. By bounding the
variables wi by 0 from below, we only penalize whenever workload is above the
desired average. This formulation has the advantage of steering towards 2 weeks
of 5 templates rather than 1 week of 6 templates and 1 of 4 templates.

Table 5 shows the results when adding Equations (28), (29), and (30) to the
model. For all crew bases, the found solutions are proven to be optimal with
respect to the used objective (28)(i.e., the gap reported by CPLEX is 0.0%).
The resulting rosters (e.g., Figure 2) are evaluated by the roster expert as more
satisfactory.
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Table 5: Results optimization problem including symmetry breaking constraints.

Crew Base#Variables #Constraints #Nodes #Solutions Time (s) Value Gap
Enkhuizen 8160 7633 2241 6 54 11 0.0%
Nijmegen 35670 28596 8637 1 345 18 0.0%
Utrecht 215602 112130 112951 36 142676 39 0.0%

5 Discussion

To answer the feasibility question posed by NS, we have developed an integrated,
tractable ILP model to solve Cyclic Crew Rostering Problems, using templates
instead of duties. This allowed feasible rosters respecting labour regulations when
considering real-world data. Further, computational complexity was reduced by
removing symmetries in the solution space. However, an NS expert judged the
resulting rosters as unattractive to its crew members. Therefore, soft constraints
were introduced that allowed balancing the workload over the weeks. This pro-
vided rosters that are optimal with respect to the balancing of workload and
more satisfactory to crew members.

Remarks on the proposed method can be made. As shown in Section 3.1, the
roster rule Weekly rest time was modelled less strict than the labour agreements,
which might cause a feasibility issue in practice. The practical implications of
this need to be studied and, if needed, countermeasures need to be taken. Fur-
thermore, it needs to be noted that the ILP model needs updates when rules are
changed. For example, NS is planning to increase the number of Red Weekends
per year. This might lead to a reduced effect of the symmetry breaking con-
straints (see Equation (27)). Then, other symmetry breaking constraints can be
considered to reduce computation times. All in all, we proposed a model which
reflects a real-world problem, taking into account all real-world constraints and
not simplifying those. As such, results are realistic and thus useful for NS: they
now know that it is possible to create feasible rosters using templates. They even
use the model proposed above to further research the newly proposed template
based crew planning process.

The rosters generated by the ILP model need to be further improved in terms
of fairness [7, 19] and attractiveness [7] in order to use them in practice, as also
becomes apparent from informal feedback of different NS roster experts. For
example, days off are preferred consecutively and increasing starting times are
desired within a sequence of templates (i.e., not to much fluctuations in starting
times). Also, crew members’ specific preferences can be considered. However,
these additions imply adding more either hard or soft constraints to the model,
which would increase the model’s computational complexity. For this reason,
future research should also consider different, possibly hybrid, solving methods,
such as AI -induced decomposition techniques using column generation [9, 10].
Furthermore, preventing a cold start problem in solving the ILP could speed up
the process, as indicated by Er-Rbib et al. [11]. Because of the nature of the
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complex rostering rules, it is worth considering Constraint Programming [9, 10]
to generate rosters.

In sum, an ILP model is presented. This allows to generate constraint and
template-based, integrated, exact, and tractable models for cyclic crew rosters.
However, these rosters show to be unsatisfactory for the crew members they
would be assigned to. To satisfy part of the the crew members’ preferences, soft
constraint are added to the models to improve workload balance, which improves
the roster quality. To improve roster quality even more, AI -OR approaches are
promising, uniting the best of both worlds, especially for complex, real-world
scenarios, which often ask for good instead of optimal solutions.
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Appendix

Here, we define the helper functions used in the model formulation of Section 3.
We define the function h : C × W → C × W , which gives the cell in the

subroster that corresponds to the day after cell (i, j) as:

h(i, j) =


(C1

c , 1) if j = 7 and i = C1
c + |Cc| − 1, i ∈ Cc,

(i+ 1, 1) if j = 7 and i ̸= C1
c + |Cc| − 1, i ∈ Cc,

(i, j + 1) else,
(31)

where C1
c is the smallest element of Cc, i.e., the first row corresponding to roster

group c. We can use h recursively if we want to know what cell corresponds to n
days after cell (i, j) by calling hn(i, j). Here, h0(i, j) = (i, j) and h1(i, j) = h(i, j).
We denote h−1(i, j) for the cell before (i, j).

The function t((i1, j1), (i2, j2)) : (C ×W ) × (C ×W ) → R, which gives the
time in minutes between the end of the template on cell (i1, j1) end the beginning
of the template on cell (i2, j2), or guarantees enough minutes if one of the cells
is not assigned a template, is given by

t((i1, j1), (i2, j2)) =1440−
∑

b∈Bj1

xb
i1Eb +

∑
b∈Bj2

xb
i2Sb +

∑
d∈D

xd
i2j2S

+ 1440

(
j2 + 7

(
(i2 − i1) mod |Cc|

)
− j1 − 1

)
,

(32)

where i1, i2 ∈ Cc and S = maxb∈B Eb. We now have the following cases if not
both cells are assigned a template:
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1. A template is assigned to cell (i2, j2) only. Then, (32) returns a value equal
to 1440 plus

∑
b∈Bj2

xb
i2
Sb and the amount of minutes corresponding to the

number of days between the considered cells. A lower bound on this value is

1440

(
j2 + 7

(
(i2 − i1) mod |Cc|

)
− j1

)
.

2. Both cells (i1, j1) and (i2, j2) contain a type of D. Then, (32) returns a value
equal to 1440 plus maxb∈B Eb and the amount of minutes corresponding to
the number of days between the considered cells. The same lower bound
holds as in the previous case.

3. Only cell (i1, j1) is assigned a template. Now, it can happen that a large
number is subtracted from (32) in the second term. However, it cannot be
larger than what is added in the the fourth term, which equals maxb∈B Eb.
So again, a lower bound on the value that (32) returns in this case is

1440

(
j2 + 7

(
(i2 − i1) mod |Cc|

)
− j1

)
.

All in all, if we make sure the constraints we make always hold whenever t returns

at least 1440

(
j2 + 7

(
(i2 − i1) mod |Cc|

)
− j1

)
, in practice we only consider

the constraint whenever templates are assigned to both cells.
Next, we define a variant of the above function, tU ((i1, j1), (i2, j2)) : (C ×

W )× (C ×W ) → R, in which we only care for templates b ∈ B on (i1, j1) which
have a certain property corresponding to the binary variable Ub ∈ {0, 1} as

tU ((i1, j1), (i2, j2)) =1440−
∑

b∈Bj1

xb
i1EbUb +

∑
b∈Bj2

xb
i2Sb +

∑
d∈D

xd
i2j2S

+ 1440

(
j2 + 7

(
(i2 − i1) mod |Cc|

)
− j1 − 1

)
,

(33)

where i1, i2 ∈ Cc.
When guaranteeing the norm of a (series of) R,S day(s), a WTV day can be

seen as a template with start time 120 (02.00) and end time 1440 (24.00). This
allows us to make use of a modified version of the function t in which we treat
a WTV day as a template with mentioned start and end time:

tWTV ((i1, j1), (i2, j2)) =1440−
∑

b∈Bj1

xb
i1Eb − 1440xWTV

i1j1 +
∑

b∈Bj2

xb
i2Sb

+
∑

d∈{R,S}

xd
i2j2S + 120xWTV

i2j2

+ 1440

(
j2 + 7

(
(i2 − i1) mod |Cc|

)
− j1 − 1

)
,

(34)

where i1, i2 ∈ Cc.
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