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Abstract. In clinical decision support systems, Bayesian networks are
often preferred as formalism for learning and reasoning with causally
related information. As white-box AI models they combine domain ex-
pertise and data in stochastic causal models that allow for transpar-
ent, robust, and explainable inferences, like the best fitting treatment
or follow-up of cancer patients. To facilitate personalized healthcare, the
models require both medical and quality-of-life aspects. A major chal-
lenge with quality-of-life information is that it is inherently subjective
and ordinal; we are typically interested in change rather than absolute
value; e.g., a treatment that slows down a decreasing quality-of-life. One
needs to reason with subjective, but ordered and temporal information
(“I’m feeling better today than yesterday”). This implies novel representa-
tion, learning, inferring, and explanation of such information in Bayesian
networks. In this short paper I present some preliminary ideas on how to
represent such information and show, using simple examples, how mod-
els can be trained on heterogeneous subjective data and how inference
queries can be computed.

Keywords: Bayesian Networks · Quality-of-life · Decision Support Sys-
tems · Temporal Inferences · Subjective Information.

1 Introduction

Allowing people to live longer in good health, defined by their own quality-of-
life (QoL) expectations, is a crucial mission within the Dutch Knowledge and
Innovation Agenda on healthcare. Personalised treatment and follow-up is vital
for both optimising the patient’s well-being as well as mitigating the costs of
healthcare [7]. Artificial intelligence, in the form of clinical decision support sys-
tems (CDSSs), can help healthcare practitioners and patients to make informed
decisions about personalised care [18]. In these CDSSs, Bayesian networks are
often preferred as formalism for learning and reasoning with causally related
information [9]. As white-box AI models they combine domain expertise and
data in stochastic causal models that allow for transparent, robust, and explain-
able inferences, like the best fitting treatment or follow-up of cancer patients.
The ENDORISK model [15], for example, allows oncologists to estimate the risk

https://www.socsci.ru.nl/johank/index.html


2 J. Kwisthout

of preoperative lymph node metastasis; this allows for risk stratification and
the avoidance of unnecessary removal of the lymph nodes in low-risk patients,
considerably affecting their post-operative health-related QoL.

To facilitate decision making about personalized healthcare, the Bayesian
networks at the heart of these CDSSs need to integrate both medical and QoL
aspects [21]. Revicki and colleagues define QoL as “a broad range of human ex-
periences related to one’s overall well-being. It implies value based on subjective
functioning in comparison with personal expectations and is defined by subjec-
tive experiences, states and perceptions. Quality of life, by its very natures, is
idiosyncratic to the individual, but intuitively meaningful and understandable to
most people” [16, p. 888]. A major challenge with QoL information, such as
data obtained with patient questionnaires, is that it is inherently subjective and
relative, as the above definition illustrates. For example, in the EORTC QoL
questionnaire1, participants may report on pain in the last week (not at all, a
little, quite a bit, or very much). A repeated report going from a little to quite
a bit in the course of a week gives relevant information (namely, an increase in
pain over time for this patient) but it is challenging to generalize these subjective
assessments over patients: what is ‘quite a bit’ for some patient may feel as ‘very
much’ for one other, depending on their ‘baseline’ [13]. This makes it difficult to
use this information to learn and encode averages over individual QoL scores in
Bayesian networks independently of this baseline and then use these averages to
make individual predictions.

Furthermore, when using such information, we are typically interested in
change, or even rate of change, rather than absolute value; e.g., in decision
making we might search for a possible treatment that slows down a decreasing
QoL without compromising disease-specific survival rate [11]. We want to make
complex inferences, taking into account time-dependent changes in the relative
difference between some baseline (no treatment) and a potential course of action,
to advise patients and healthcare professionals on the likely outcome of decisions
to be made. This substantially surpasses the well-known algorithmic approaches
in Bayesian inferences, like computing posterior distributions or most probable
explanations.

To summarize, in order to systematically include quality-of-live in clinical
decision support systems, one needs to reason with subjective, but ordered and
temporal information (“I’m feeling better today than yesterday”). This implies
novel representation, learning, inferring, and explanation of such information in
Bayesian networks. In this short paper I will present some initial ideas with
respect to representation of subjective, temporal, and ordered information, how
such representations can be learned from heterogeneous and subjective QoL data,
and how complex inferences (like ‘what is the probability that this treatment
increases quality-of-life?’) can be computed using such representations.

1 https://www.eortc.org/app/uploads/sites/2/2018/08/Specimen-QLQ-C30-English.
pdf
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1.1 Related work

We assume that the reader is in general familiar with Bayesian networks and
refer to textbooks like [3] for an introduction. Dynamic Bayesian networks [12]
enhance Bayesian networks (representing a static joint probability distribution)
with a notion of time-related dependencies. They are typically modelled as a
prior model and a transition distribution; for inference this is typically unpacked
into several time-slices where each slice is a (static) Bayesian network and intra-
time-slice arcs depict changes over time. In the literature there have been several
attempts to model dynamic information in CDSSs using dynamic Bayesian net-
works [10,17,19]; however, none of these models include QoL information.

Other CDSSs, such as [20], do integrate QoL information (in the form of
average FACT-B2 scores) in the Bayesian network. However, the way this in-
formation is encoded makes it difficult to explicitly reason about (desired or
expected) outcomes over time. Furthermore, this approach is limited to QoL
scores that are summarized from validated tests batteries such as the FACT-B
questionnaire.

Subjective Bayesian networks [1], finally, do not encode subjective (non-
absolute) information but are designed to encode subjective probability assess-
ments, using imprecise probabilities. A similar approach to explicitly modelling
ignorance about exact probabilities (using credal networks, [2]) has found some
application in decision support systems, but also here the focus is on representing
sets of probabilities rather than on representing subjective variables.

1.2 Remainder of this paper

The remainder of this paper is organized as follows. We introduce our proposed
representation of temporal QoL information in Bayesian networks in Section 2,
and illustrate this approach with examples problems in learning (Section 3) and
inference (Section 4). We conclude in Section 5.

2 Representation

We make the assumption that the Bayesian networks in question combine patient-
specific characteristics (generic aspects, like age and sex, as well as findings, mea-
surements, and observations, like tumour size and type); decision variables, like
treatment options, and outcomes, like disease-specific survival rate. A general
depiction of the typical relationships between these variables (PC for patient
characteristics, T for treatment, and SR for survival rate) is given in Figure
1(a). Note that this is an overly simplified model and in reality (such as the
ENDORISK model) there will be more complex interactions, hidden variables,
etc. It suffices to make our point, though.

Typically one makes a decision (establishes a value for T) to optimize the out-
come SR, taken the patient characteristics into account. Computationally, this
2 https://www.facit.org/measures/fact-b
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PC T

SR

(a) A Bayesian network relating pa-
tient’s characteristics (PC) with pos-
sible treatment (T) and survival rate
(SR). This hugely simplified toy exam-
ple illustrates the key inference to be
made using such networks: Given the
patient’s characteristics, find the treat-
ment that optimizes the expected sur-
vival rate.

PC T

SR QoL

(b) In this adapted network we add
QoL considerations in the form of an
additional node QoL. Note that we now
have a trade-off between optimizing for
SR and for QoL, allowing patients and
healthcare practitioners to discuss pref-
erences over different outcomes.

Fig. 1: Integrating QoL information in Bayesian decision support systems - a
naive approach.

boils down to the problem “Find a treatment T that maximizes E(SR | T,PC)”
where E(.) indicates the expected value of a variable, in this case, the expected
survival rate.

Now, a naive extension to QoL as second outcome variable is depicted in
Figure 1(b). Here, QoL is a similar variable as SR, and if this variable can be
summarized in some standard scale (like the FACT-B score) this may well serve
for some applications. This approach, however, has several drawbacks:

1. QoL here is a static variable; it does not take change (as a result of treatment)
into account. Ideally we would like to consider QoL pre-treatment as well as
post-treatment, and in many cases also some time after treatment (follow-
up), to compare the effects of treatment over time with a baseline with no
treatment.

2. The value of QoL is treated as an absolute value, rather than a patient-
specific, time-dependent relative value. While these absolute values may be
useful for comparisons over cohorts of patients (averaging out individual
differences), they are of limited value to support individual decision making.

3. Numerical values for QoL are not always available or useful. They do not
facilitate advanced queries such as “find a treatment that slows down decrease
of QoL” nor are easily translatable from statements like “I feel way better
after treatment than before”.
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We therefore introduce a novel proposal with three key ingredients that ad-
dress these drawbacks:

1. We introduce multiple variables (three, in this presentation, but this can
be adjusted where needed) QoLpre, QoLpost, and QoLafter. All three are de-
pendent on the patient’s characteristics, post and after treatment also on
treatment; post and after treatment are dependent on the previous state
in time. With treatment set to ‘no treatment’, these variables encode en-
dogenous change in QoL, otherwise they encode the relative effect of the
treatment.

2. QoLpre encodes a baseline state pre-treatment; QoLpost and QoLafter encode
changes relative to the baseline. In our approach these variables take values
from a Likert scale (for example, ‘bad’, ‘OK’, and ‘fine’ for QoLpre and
‘worse’, ‘similar’, and ‘better’ for QoLpost and QoLafter). More fine-grained
granularity or more specific values can be used where desired.

3. We introduce a virtual binary node fQoL which represents a deterministic
statement given its parents; Pr(fQoL = T | π) = 1 for a specific set of values
π of its parents if and only if these values are consistent with the statement.
An example of such a statement would be ‘Quality of life does not decrease
post-treatment’; the corresponding CPT for Pr(fQoL = T | π) evaluates to
1 if and only if the values for QoLpost and QoLafter are ‘similar’ or ‘better’.
This virtual node is used for both learning and inference.

Figure 2 captures this idea. Note that fQoL is a virtual node: it is tempo-
rally added to the network upon learning or inference as desired, as depicted in
Sections 3 and 4.

2.1 Running example

Experienced pain is a notoriously subjective self-reported outcome. To some
extent it may be validated, for example by cross-validation with other reported
measures [6] or by the physical validation of reported pain with behaviour like
moaning, sweating, and asking for medication [5]. However, “[a]mong patients
with the same condition, pain ratings typically cover the entire scale from “no
pain” to “the worst pain imaginable.” ” [13, p. 231]. In this running example
we take inspiration from a study of phantom pain after limb amputation [14];
participants were questioned about pain one day prior, one week after, and six
months after scheduled lower limb amputation. In the above study, pain was
reported using the Visual Analog Scale (VAS, where participants put a mark on
a 0-10 scale with 0 meaning ‘no pain at all’ and 10 meaning ‘pain as bad as it
could possibly be’); to illustrate our approach we assume that our data is way
more heterogeneous in nature and may range from (three-valued) VAS scores to
statements verbally relating pain post-operation to pre-operation.

A partial Bayesian network is shown in Figure 3. The distributions Pr(pre),
Pr(post | amp = T ) and Pr(after | amp = T ) are not yet shown as we will learn
them from data. The example shows that, when not treated, the expected pain
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PC T

SR QoL QoL QoL
pre post after

fQoL

Fig. 2: Essence of the proposed representation. Rather than a single node, QoL
is represented as a series of nodes (pre-treatment, post-treatment, and follow-up
after treatment). The virtual node fQoL is a deterministic function, representing
the ‘possible worlds’ congruent with a statement or desired outcome; this node
is set to true as evidence for learning and inference.

will be more severe. For ease of exposure and training we further simplify the
model and assume no arc from QoLpre to QoLpost or from QoLpost to QoLafter.

pain pain pain
pre post after

fpain

amp

Pr(amp = T ) = 0.50

Pr(post = worse | amp = F ) = 0.75
Pr(post = similar | amp = F ) = 0.20
Pr(post = better | amp = F ) = 0.05

Pr(after = worse | amp = F ) = 0.80
Pr(after = similar | amp = F ) = 0.15
Pr(after = better | amp = F ) = 0.05

Fig. 3: Example network with partial CPT. Note that fpain is a virtual node; we
will learn Pr(pre), Pr(post | amp = T ) and Pr(after | amp = T ) from data.
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3 Learning

As indicated above we want to be able to learn QoLpre, QoLpost, and QoLafter

from heterogeneous data, both from actual values (like numerical VAS scores or
Likert scale scores) as well as from descriptive verbal statements. For actual val-
ues (that map the state space of the QoL variables, if needed after pre-processing)
we translate absolute values into relative values and use a vanilla Expectation-
Maximization technique. For descriptive values we use the virtual evidence node
fpain and treat the QoL variables as hidden variables. For illustration some hy-
pothetical data points are given in Table 1. Note that both the post-treatment
and follow-up change are relative to pre-treatment.

pre-treatment post-treatment post-treatment follow-up follow-up
(absolute) (relative) (absolute) (relative)

p1 severe moderate better moderate better
p2 severe severe similar moderate better
p3 moderate moderate similar moderate similar
p4 severe severe similar moderate better
p5 moderate severe worse absent better

p6 ‘I felt worse after treatment than before, but much better after a while’
p7 ‘I was in very much pain pre-treatment, but it improved in time’
p8 ‘My pain has not changed, but it has only been a week after treatment’

Table 1: Small example data set of patients self-reporting pain using a question-
naire before, post, and following up on treatment, as well as three verbal reports
of pain dynamics. Absolute reported values are adjusted into a relative value for
post and follow up treatment.

For p6, p7, and p8, we translate the statements to a deterministic CPT for the
virtual evidence variable fpain. We set Pr(fpain = T | pre,post, after) = 1 if and
only if the statement is consistent with the values for pre, post, and after. Note
there is sometimes some (subjective) interpretation necessary. For example, for
p7 we assumed pain pre-treatment was severe (not moderate), we are indifferent
about the change briefly after treatment, and assumed improvement at follow-up.

We use the Expectation-Maximization algorithm to augment the data points
for p6, p7, and p8 (treating pre, post, and after as hidden variables with a
different CPT for fpain for each patient). The weighted data points are then
normalized and the resulting probabilities are listed in Figure 4.

4 Inference

In the previous section we saw how virtual evidence nodes can help translate ver-
bal statements into consistent values for pre, post, and after, facilitating learning
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p5 post = better post = similar post = worse
after = b after = s after = w after = b after = s after = w after = b after = s after = w

pre = bad 0 0 0 0 0 0 1 0 0
pre = OK 0 0 0 0 0 0 1 0 0
pre = fine 0 0 0 0 0 0 1 0 0

p6 post = better post = similar post = worse
after = b after = s after = w after = b after = s after = w after = b after = s after = w

pre = s 0 0 0 0 0 0 0 0 1
pre = m 0 0 0 0 0 0 0 0 1
pre = a 0 0 0 0 0 0 0 0 1

p7 post = better post = similar post = worse
after = b after = s after = w after = b after = s after = w after = b after = s after = w

pre = s 1 0 0 1 0 0 1 0 0
pre = m 0 0 0 0 0 0 0 0 0
pre = a 0 0 0 0 0 0 0 0 0

p8 post = better post = similar post = worse
after = b after = s after = w after = b after = s after = w after = b after = s after = w

pre = s 0 0 0 1 1 1 0 0 0
pre = m 0 0 0 1 1 1 0 0 0
pre = a 0 0 0 1 1 1 0 0 0

Table 2: Deterministic CPT for fpain for p6, p7, and p8.

pain pain pain
pre post after

fpain

amp

Pr(amp = T ) = 0.50

Pr(pre = severe) = 0.58
Pr(pre = moderate) = 0.34
Pr(pre = absent) = 0.08

Pr(post = worse | amp = F ) = 0.75
Pr(post = similar | amp = F ) = 0.20
Pr(post = better | amp = F ) = 0.05

Pr(post = worse | amp = T ) = 0.08
Pr(post = similar | amp = T ) = 0.33
Pr(post = better | amp = T ) = 0.59

Pr(after = worse | amp = F ) = 0.80
Pr(after = similar | amp = F ) = 0.15
Pr(after = better | amp = F ) = 0.05

Pr(after = worse | amp = T ) = 0.04
Pr(after = similar | amp = T ) = 0.17
Pr(after = better | amp = T ) = 0.79

Fig. 4: Example network after learning.

a model from heterogeneous data. Interestingly, a similar approach can be used
for facilitating complex inference queries. For example, we may want to compute
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the probability that a given treatment slows down or reverts a decrease of QoL
post treatment. In our simple example, this is the case if the value for after is
better than or equal to the value for post. The corresponding CPT is given in
Table 3.

p6 post = b post = s post = w
after = b after = s after = w after = b after = s after = w after = b after = s after = w

pre = s 1 0 0 1 1 0 1 1 0
pre = m 1 0 0 1 1 0 1 1 0
pre = a 1 0 0 1 1 0 1 1 0
Table 3: Deterministic CPT for fpain consistent with the statement ‘Treatment
slows down or reverts a decrease of QoL.

We can then compute, for example, Pr(fpain = T | pre = moderate, amp = T )
in the trained model above and find that Pr(fpain = T | pre = moderate, amp =
T ) = 0.86.

In more complicated models such functions can facilitate elaborate queries.
For example, assume that multiple treatments exist and that QoLpre, QoLpost,
and QoLafter all have a five point Likert scale (ranging from −− to ++). Using
this approach we can then compute complex queries like ‘Find a treatment that
slows down the decrease in QoL.’ or ‘Find a treatment that has the best expected
QoL while having an expected disease-specific survival rate of at least 3 years.’
Of course, this all depends on the availability of a correct mapping from the
variables of interest to fpain.

5 Conclusion

In this short paper we presented some early ideas on how to represent, learn,
and reason with relative and temporal information in Bayesian networks, allow-
ing for complex inferences about desired or expected changes in quality-of-life
of patients. Crucial aspects of this approach are QoL-variables before and after
treatment where the latter encode a change relative to the pre-treatment base-
line. Complex dynamics can be encoded with multiple time slices; this allows for
inferences about change or even rate of change due to some intervention, such
as the application of a treatment.

Important in this approach is the introduction of a virtual evidence variable
while learning or during inference; this virtual evidence variable is a deterministic
variable that encodes the QoL values consistent with a particular statement, i.e.,
a mapping f(statement) → possible worlds.

Different variations of this proposed formalism are possible. In our running
example we used three values per QoL variable; other approaches may use a Lik-
ert scale of four or five variables. We would advise to be careful with interpreting
numerical values such as a VAS scale unless patient scores are validated and nor-
malized, as the average score may suggest an unwarranted precision. We used a
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concrete baseline (i.e., severe, moderate, or absent pain); one can also decide to
model change relative to an unspecified baseline (‘better than before’). In our
running example we left out endogenous change (i.e., no arcs between the QoL
variables); one might of course go in the other direction and assume interaction
effects between pre-treatment and post-treatment at follow-up measurement. Fi-
nally we encoded change relative to pre-treatment for both post-treatment and
follow-up; one might also encode change relative to the previous measurement
moment (follow-up vs. post-treatment).

Obvious future work is to explore actual QoL data sets to study the training
of concrete networks such as ENDORISK; furthermore it would be of interest to
study the different variations for baseline values etc. as indicated above. More
fundamental possible work seeks to optimize inference given the deterministic
structure of fQoL cfm. [4], to decompose complex inference queries to simpler
logical structures (using multiple virtual evidence nodes) [8], and to explore
explanation of QoL results.
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