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1 Introduction

In this work, we introduce the SpatioTemporal coVariance Neural Network
(STVNN), a temporal convolutional graph neural network for multivariate time
series that employs the sample covariance matrix of the data as a graph. We
show that STVNN draws similarities with temporal PCA, as it manipulates the
data according to eigencomponents of their covariance. To account for stream-
ing data and potential distribution shifts, we adopt an online learning strategy,
thus updating the model when new data becomes available. Observing data in a
stream introduces uncertainties, as the estimate of the covariance matrix might
be imprecise and the model parameters are optimized only on the observed data.
In this context, we theoretically show that STVNN is stable to errors in both co-
variance matrix and parameters estimation, thus improving over temporal PCA
approaches which are unstable to ill-defined covariance matrix eigenvalues (i.e.,
when two covariance matrix eigenvalues are close, a slight change in data points
might correspond to a large change in the principal directions [2]). This abstract
summarizes the work in [1].

2 Online Time coVariance Neural Networks

We assume to haveM observations of a multivariate time series, each of sizeN , in
a matrix X ∈ RN×M , where samples are temporally ordered. The time series has
time-varying mean µt and covariance Ct (constant in case of stationarity). Since
we do not have access to the true mean and covariance, we compute estimates
µ̂t, Ĉt from the t observed samples.

We define the SpatioTemporal coVariance graph Filter (STVF) as

zt =

T−1∑
t′=0

K∑
k=0

hkt′Ĉ
k
t xt−t′ = H(Ĉt,ht,xt−T+1:t) (1)

where T is the time window size, K is the order of the convolutional filter and
hkt′ are coefficients. This filter performs graph signal shift operations up to the
K-th neighborhood to model spatial relationships and aggregates information
over the previous T temporal samples to account for temporal interactions. We
define a STVNN layer by using a bank of STVF of size Fout whose filters process
the input in parallel and by applying a pointwise non-linearity σ to the output.
Then, we define a STVNN by stacking L consecutive STVNN layers and we
denote it as Φ(Ĉ,h,xt), where h contains all the learnable coefficients.
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3 Stability analysis and experiments

We analyze the stability of the STVF with respect to to two sources of errors due
to streaming data: the uncertainties in the estimation of the covariance matrix
and the suboptimal model parameters.

Theorem 1. Consider a random variable xt ∈ RN with covariance matrix C
and such that ∥x∥2 ≤ G

√
E[∥x∥22] for a constant G ≥ 1. Given a sample co-

variance matrix Ĉt estimated from t samples xt such that ∥xt∥ ≤ 1, an integral
Lipschitz STVF with temporal dimension T , Lipschitz constant P and two sets
of coefficients, h∗ optimized over the complete dataset, and ht optimized over t
samples using online gradient descent with learning rate η, the following holds
with probability at least (1− e−ϵ)(1− 2e−u):

∥H(Ĉt,ht,xt)−H(C,h∗,xt)∥ ≤ O
(
1

t

)
+

1√
t
PT

√
N

(
kmaxe

ϵ/2 +QG∥C∥
√
N(logN + u)

)
+

∥h∗∥22
2ηt

(2)

where Q is an absolute constant, kmax = maxj kj and kj =
(
E[∥XXTvj∥22]− λ2

j

) 1
2

is a related to the kurtosis of the data.

The bound decreases with the number of time samples with rate O
(
1/
√
t
)
,

since the sample covariance becomes closer to the true one and the parameters
approach their optimal values. The covariance-related errors (first term) domi-
nate the parameters-related ones (second term) asymptotically. Larger window
sizes T consider more temporal information but lead to lower stability. The Lip-
schitz constant P shows that the more discriminative the filter is (higher P ), the
less stable it is, as common for GNNs.
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Fig. 1: Stability of STVNN and TPCA models.

The numerical results in Figure 1 support the theoretical findings as STVNN
variants are more stable than TPCA. We refer to [1] for more details.
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