
Solving the Casting problem using Column Generation;

better results with 100 variables instead of 1 billion

Jippe Hoogeveen1[0000−0002−9554−9316], Marjan van den Akker1[0000−0002−7114−0655], and Han
Hoogeveen1[0000−0001−8544−8848]

Department of Information and Computing Sciences, Utrecht University, Princetonplein 5, 3584 CC
Utrecht, The Netherlands jippehoogeveen1@gmail.com; J.M.vandenAkker@uu.nl;

J.A.Hoogeveen@uu.nl

Abstract. In casting problems the goal is to cast a number of orders such that the number
of heats needed to obtain the molten metal for the casting is minimized. In a paper by
Deb and Myburgh from 2016 the authors presented a Genetic Algorithm (GA) to �nd a
near-optimal solution, which took their GA less than 150 hours for the largest instances
with up to 100 million heats. They further stated that this type of problems could not
be solved using Integer Linear Programming (ILP) for problem instances with 200 heats or
more. In this paper, we refute their claim by showing that an ILP formulation based on a set
covering formulation that we solve using Column Generation can easily �nd almost optimal
solutions (at most a few heats more than the theoretical minimum) within a second, even
for their instances requiring 100 million heats. We further show that this ILP model can
easily be extended to deal with multiple crucibles and restricted availability of the orders
due to release dates and deadlines.

Keywords: Casting problem · crucibles · cutting stock · Linear Programming · Column
Generation · deadlines.

1 Introduction

In this paper we consider the basic casting problem that was presented by Deb and Myburgh
(2016) and the more elaborated versions discussed in Deb et al. (2003). In our description of the
problem below, we consider the most elaborate version, but we handle the several variants in order
of di�culty, starting with the basic problem in Section 2.

We are given a foundry that operates one or two crucibles (depending on the variant) to melt
metal. The two crucibles have a di�erent capacity, which we denote by W1 and W2. Per day, we
can use the crucibles m1 and m2 times, respectively. The molten metal is used to cast objects that
have been ordered by customers. We assume that we are given n orders; each order j (j = 1, . . . , n)
consists of a request for rj (j = 1, . . . , n) identical copies, where each copy requires an amount of
wj units of molten material. For each order j (j = 1, . . . , n) we are given a deadline dj at which
the entire order must be ready; we further have added an earliest start time or release date ej ,
before which we cannot start producing order j (j = 1, . . . , n). The goal depends on the variant.
If there is only one crucible available, then the obvious goal is to minimize the number of heats
needed. In case of two (or more) crucibles, we assume that the goal is to �nish as soon as possible,
but in Sections 3 and 4 we will discuss some alternative objective functions as well.

Deb and Myburgh (2016) consider the basic problem with either one or two crucibles. An essential
aspect of their approach is that they compute a target value H on the number of heats based on
a desired e�ciency metal utilization rate η, which has a typical value of 0.997 in their computa-
tional experiments. Next, they look for a solution that uses exactly H heats, thereby turning the
optimization problem into a feasibility problem. To solve this feasibility problem they design a
Genetic Algorithm and they further formulate it as an Integer Linear Program, which is solved
using the commercial solver CPLEX. On basis of their computational experiments, they conclude
that their Genetic Algorithm clearly outperforms their ILP approach.



2 J. Hoogeveen et al.

In this paper we show that the disability of their ILP to �nd good solutions is due to the type
of formulation that Deb and Myburgh (2016) use, and that in fact ILP techniques work far
better than a Genetic Algorithm for this type of problem. Thereto, we present a di�erent type
of ILP formulation that is capable of �nding solutions that are at most a few heats away from
the theoretical optimum, which does not depend on the utilization rate η. We further show that
this ILP can easily be extended to deal with the extensions mentioned in the paper by Deb et al.
(2003), for which we again �nd solutions very close to the theoretical optimum in seconds.

2 ILP formulation

As mentioned above, Deb and Myburgh (2016) formulate the feasibility problem `Does there exist

a solution that uses H heats' as an ILP (which we call the DM-ILP). Hereto, they use variables xjh
(j = 1, . . . , n;h = 1, . . . ,H) that indicate the number of copies of order j that are cast from heat
h. This ILP is very hard to solve for an ILP solver because of the integrality of the xjh variables,
as Deb and Myburgh (2016) remark. Moreover, this ILP formulation su�ers tremendously from
symmetry, as all H! solutions that can be obtained by renumbering the H heats are considered
di�erent by the ILP solver and hence might be investigated. Their ILP formulation has a constant
objective (say 0) that must be minimized subject to the constraints

H∑
h=1

xjh ≥ rj ∀j = 1, . . . , n (1)

xjh ≥ 0 and integral ∀j = 1, . . . , n; ∀h = 1, . . . ,H (2)

Looking at the optimization variant of the problem as a cutting stock problem opens the way
for a di�erent ILP formulation. In the one-dimensional cutting stock problem we are given a set
of identical bars with length L from which we must cut pieces to ful�ll n orders. Here order j
(j = 1, . . . , n) requests to cut rj copies of length wj ; the goal is to minimize the amount of wasted
material, which boils down to minimizing the number of bars that are cut. The cutting stock
problem was already described by Kantorovich in 1939 (see Kantorovich, 1960), and it formed
the inspiration for Gilmore and Gomory to establish the technique of Column Generation, (see
Gilmore and Gomory, 1961, 1963, 1965).

The basic casting problem with only one crucible with capacity W and n orders of rj copies of
size wj can easily be translated into a cutting stock problem: we have bars of length W , from
which we are asked to cut rj pieces of length wj , for j = 1, . . . , n. The goal is to minimize the
number of heats used, which comes down to minimizing the number of bars used. Hence, we can
formulate the basic casting problem as an ILP similarly to the ILP formulation of the cutting
stock problem (which we call the CG-ILP). Thereto, we de�ne heat patterns, which indicate how
we use theW units of molten material from a single heat. Heat pattern s is described by the vector
(as1, as2, . . . , asn), where asj signals the number of copies that are cast from the object involved
in order j (j = 1, . . . , n). Since we want our heat patterns to be feasible, each heat pattern s must
satisfy the constraints

n∑
j=1

wjasj ≤W, and (3)

asj ≥ 0 and integral ∀j = 1, . . . , n. (4)

Let S denote the set of feasible heat patterns. For each heat pattern s ∈ S we introduce a variable
xs that indicates the number of heats that are used according to heat pattern s ∈ S. This leads
to the following ILP formulation



Title Suppressed Due to Excessive Length 3

min
∑
s∈S

xs subject to (5)

∑
s∈S

asjxs ≥ rj ∀j = 1, . . . , n (6)

xs ≥ 0 and integral ∀s ∈ S (7)

Obviously, not all feasible heat patterns are known, and enumerating these is computationally
intractable in general. Gilmore and Gomory (1961) have shown that a near-optimal solution can be
obtained by the technique of Column Generation. Hereto, we �rst relax the integrality constraints
to xs ≥ 0 for all s ∈ S. We start with only a small subset S′ of S, for example the n basic heat
patterns in which we produce as many copies as possible of object j (j = 1, . . . , n) only. Next,
we solve the resulting LP for the variables in S′; as a by-product we �nd the shadow prices πj
(j = 1, . . . , n), where shadow price πj corresponds to the constraint for order j in Constraint 6.
We then generate heat patterns that improve the solution of the current LP; it is well known from
LP-theory that this is only possible for heat patterns with negative reduced cost. The reduced cost
of the heat pattern characterized by (as1, as2, . . . , asn) is equal to

1−
n∑

j=1

πjasj .

To �nd a heat pattern with negative reduced cost (if it exists) we solve the so-called pricing

problem, in which we search for the heat pattern s for which the reduced cost is minimized. Hence,
we aim to �nd the heat pattern s for which (as1, . . . , asn) maximizes

n∑
j=1

πjasj

subject to Constraints 3 and 4. This pricing problem corresponds to a variant of the Knapsack
problem, where the knapsack has a volume of W and there are n items. Item j corresponds to
product j (j = 1, . . . , n); it has a revenue of πj and a weight of wj , and the variable asj de�nes the
number of times that item j gets selected. This variant of the Knapsack problem can be solved in
O(nW ) time by Dynamic Programming (see for example Kellerer et al., 2004). To do this, we use
state variables fj(t) to denote the maximum pro�t of any knapsack of weight at most t that uses
only items 1, 2, · · · , j. We use j = 1, 2, . . . , n and t = 0, 1, . . . ,W and get the recursive relation

fj(t) = max{fj−1(t), fj(t− wj) + πj}

where the �rst alternative describes a knapsack without item j and the second describes a knapsack
with at least one item j (note that this is only possible if t ≥ wj). By calculating fj(t) in order
of j and t, we can calculate all fj(t) correctly in O(nW ) running time. Next, we �nd the optimal
pro�t for this instance of Knapsack at fn(W ), and we can �nd a solution with this value by
backtracking through the DP table. When fn(W ) > 1, then this solution corresponds to a feasible
heat pattern with negative reduced cost; we add it to S′, solve the LP again, etc. When the
minimum reduced cost is non-negative (which corresponds to fn(W ) ≤ 1), then we have solved
the LP-relaxation and the outcome value gives us a valid lower bound to the ILP.

Let x∗ denote the solution to the LP-relaxation. If x∗ is integral, then we have found an optimal
solution; if there are variables in x∗ with a fractional value, then we construct a feasible integral
solution by rounding. The easiest way is by rounding up each fractional value. Since the number of
variables in x∗ with a positive value is at most equal to the number of constraints, which amounts
to n, the di�erence between the outcome value of x∗ and the outcome value of the rounded up
solution is less than n, and hence, because of integrality, we use at most n − 1 heats more than
the optimum solution. If we want to reduce this potential gap, then we can also round down x∗.



4 J. Hoogeveen et al.

We then produce too few copies of some products, and the remaining copies must be cast using
additional heats. This results in a much smaller instance of the basic casting problem. Since the
feasible solution obtained by rounding x∗ up uses at most n heats more than the solution in which
we round x∗ down, the lacking copies of the objects can be cast using at most n heats. Unless n
is very big, this problem can be solved by using the DM-ILP in combination with binary search
on H. An alternative might be to use some heuristic or metaheuristic.

We can also slightly change the DM-ILP to immediately �nd the optimal value of H. Recall that
the original ILP formulation of Deb and Myburgh (2016) looked like:

min 0 subject to (8)

N∑
j=1

wjxi,j ≤W ∀i = 1, . . . ,H (9)

H∑
i=1

xi,j = rj ∀j = 1, . . . , n (10)

xij ≥ 0 and integral ∀i = 1, . . . ,H and j = 1, . . . , n (11)

We can slightly modify this ILP by adding binary variables yi for all i = 1, . . . ,H that denote if
we want to use heat i (then yi = 1). This changes the objective to

min

H∑
i=1

yi

and changes Constraint 9 to

N∑
j=1

wjxi,j ≤Wyi ∀i = 1, . . . ,H

This ILP is able to �nd the minimal number of heats required in one go. It will generally be harder
to solve than the ILP from Deb and Myburgh (2016) due to the extra binary variables, but as we
only have a few remaining copies left, it should be doable. The advantage is that this ILP can be
used more generally when we also have deadlines and release dates, where the binary search on H
becomes impossible. We can reduce the amount of symmetry by adding the constraints

yi ≥ yi+1 ∀i = 1, . . . ,H − 1. (12)

If we know some lower bound L to the required number of heats (for example on basis of the
required amount of molten iron), then we can add that yj = 1 for all j = 1, . . . , L. Finally, if we
want to be sure that there is a feasible solution, then we can replace the maximum number of
heats H with some upper bound on the number of heats that certainly allows a feasible solution.
We call this ILP the DM+-ILP.

3 Working with two di�erent crucibles

In the basic problem we have only one crucible for melting. In the papers by Deb et al. (2003)
and Deb and Myburgh (2016) there are two crucibles with capacities W1 and W2, respectively;
these crucibles can be applied m1 and m2 times a day, respectively. We can formulate the CG-ILP
for this problem again by using heat patterns, where we distinguish between heat patterns meant
for crucible 1 and for crucible 2: in the �rst (second) type the total amount of molten material
required is at most equal to W1 (W2) units. We introduce variables xs and ys for the two types
of heat patterns that measure the number of times that the respective heat patterns are used.



Title Suppressed Due to Excessive Length 5

Assuming that we want to minimize the number of days that we need to satisfy all orders, we get
the ILP below. Here we use T to denote the number of days that are required; S1 and S2 denote
the set of heat patterns of type 1 and 2, respectively; and asj and bsj denote the number of copies
of object j (j = 1, . . . , n) that are cast using heat pattern s of type 1 and 2, respectively.

min T subject to (13)∑
s∈S1

xs ≤ m1T (14)

∑
s∈S2

ys ≤ m2T (15)

∑
s∈S1

asjxs +
∑
s∈S2

bsjys ≥ rj ∀j = 1, . . . , n, (16)

where we further request that T is non-negative and that all xs and ys variables are non-negative
and integral.

Again, we can apply Column Generation to solve the LP-relaxation, which we can then turn into
a near-optimal integral solution by applying some rounding strategy. Suppose that we have solved
the LP for a given subset S′1 (S′2) of heat patterns for crucible 1 (2); this yields the shadow prices α
and β for Constraints 14 and 15, and πj for Constraints 16. The reduced cost for the heat pattern
for crucible 1 characterized by (a1, . . . , an) is then equal to

−α−
n∑

j=1

ajπj .

Similarly, the reduced cost for the heat pattern for crucible 2 characterized by (b1, . . . , bn) is then
equal to

−β −
n∑

j=1

bjπj .

Hence, we must solve two di�erent pricing problems; one for each crucible. Since the only di�er-
ence between these two pricing problems corresponds to the capacity of the crucible, we get two
instances of the Knapsack problems that only di�er with respect to the volume of the knap-
sack. Remark that the Dynamic Programming algorithm uses state variables fj(t) that denote
the optimum solution of the instance of the Knapsack problem in which we only consider orders
1, . . . , j and in which the size of the knapsack is at most equal to t. The correct values of the
state variables fj(t) are computed recursively, for j = 1, . . . , n and t = 0, 1, . . . ,W , where we
use W = max{W1,W2}. Hence, we can solve these two instances of the Knapsack problem in
one run of the Dynamic Programming algorithm, as the desired values are found at fn(W1) and
fn(W2), respectively. After we have solved the LP-relaxation, we can apply the same rounding
strategy as before.

If we want to minimize the waste instead of the number of days required, then we can use the
objective function

minW1

∑
s∈S1

xs +W2

∑
s∈S2

ys,

which must be minimized subject to Constraint 16 and the constraint that all xs and ys are
non-negative and integral. This alternative ILP is easily solved using Column Generation again.
The same holds if we have more than 2 crucibles; the nice thing here is that we can solve the
pricing problems for all crucibles in one run of our Dynamic Programming algorithm, since the
corresponding instances of the Knapsack problem only di�er with respect to the volume of the
knapsacks.



6 J. Hoogeveen et al.

4 Restricted availability

Deb et al. (2003) consider the existence of deadlines, which is easily taken care of in their approach,
since they know for each heat when it will be produced. In this section we will show that deadlines
can easily be included in our ILP formulation, albeit that we need a work-around, since time is
not involved in our formulation. In the second part of this section we will consider adding release
dates as well, and discuss the adaptations that are required to �t these into the model. We start
in our description below with only one crucible; we will later show that our CG-ILP is readily
adapted to deal with two (or more) crucibles.

Since the deadlines are known beforehand, we can partition the time into intervals, such that the
borders of each interval correspond to a deadline (or zero for the �rst interval); the �nal interval
will run until the end of the time horizon. Let K denote the number of intervals that we obtain
in this way. For each interval k (k = 1, . . . ,K) we know the orders that can be produced in this
interval. Moreover, we know the length of each interval k and hence, given the number of heats per
day per crucible, we know the maximum number of heats that can be completed in this interval;
we denote this maximum number of heats by hk, for k = 1, . . . ,K.

We include the restricted availability of the orders by using time-dependent heat patterns. For
each interval we consider heat patterns that only contain orders that are available in that interval.
To distinguish between the intervals, we add to the characterization of each heat pattern s ∈ S
the parameters tsk (k = 1, . . . ,K). Here tsk = 1 indicates that heat pattern s is meant for interval
k; to avoid confusion we assume that each heat pattern is meant for just one single interval. If we
want to apply the same heat pattern in two di�erent intervals k and k′, then we introduce two
heat patterns s and s′ for which tsk and ts′,k′ have value 1, respectively, and all asj and as′j are
the same for each j. Just like before we introduce a non-negative, integral variable xs for each
heat pattern s ∈ S. Assuming that our goal again is to minimize the total number of heats, then
we only have to add the constraints

∑
s∈S

tskxs ≤ hk ∀k = 1, . . . ,K (17)

to the original ILP formulation for the basic problem, which existed of the Objective function 5
and the Constraints 6 and 7. When we apply Column Generation to solve the LP-relaxation, then
the reduced cost of heat pattern s is equal to

1−
n∑

j=1

πjasj −
K∑

k=1

λktsk,

where λk is the shadow price of Constraint 17 for interval k (k = 1, . . . ,K). In the corresponding
pricing problem we have to minimize the reduced cost over all possible feasible heat patterns. If
we consider interval k0, then the reduced cost becomes

1−
n∑

j=1

πjasj − λk0
;

minimizing this boils down to maximizing
∑n

j=1 πjasj , where we only allow orders with a deadline
greater than or equal to dk0

. We can solve the resulting instances of the Knapsack problem again
in one run of our dynamic program as follows. We renumber the orders in order of deadline, where
order 1 is the one with largest deadline. After renumbering, the set of available orders in interval
k becomes equal to {1, . . . , nk}, where nk is the index of the last job in the list with deadline dk.
Using our Dynamic Programming algorithm we compute the values of the state variables fj(t), for
j = 1, . . . , n and t = 0, 1, . . . ,W . Now we can compute the outcome value of the pricing problem
for interval k (k = 1, . . . ,K) as fnk

(W ), whereW is the capacity of the crucible. If there are more,



Title Suppressed Due to Excessive Length 7

say C, crucibles, then we still only need one run of the dynamic programming algorithm, since we
can �nd the desired values at fnk

(Wi), for each capacity Wi, with i = 1, . . . , C.

For the column generation to work, we need to provide a feasible starting solution (so a set S
of heat patterns for which using only these heat patterns can return a feasible solution). This
was straightforward without deadlines, but with deadlines this becomes more challenging. Luckily,
we can �nd such a feasible solution in the same way using column generation again. Hereto, we
introduce an extra variable uj for each order j (j = 1, . . . , n); we let uj correspond to the number
of un�nished copies of order j. We require that each uj ≥ 0 and we change Constraint 6, which
enforces that we produce at least rj copies of each order j, to∑

s∈S
asjxs + uj ≥ rj

Now any set S of heat patterns will provide a feasible solution, although we are of course interested
in a solution in which the uj are all 0. To achieve this, we change the objective to

min

n∑
j=1

uj

and we solve the resulting LP in the same way as before using column generation. When done it
will either return a set of heat patterns S for which this sum is zero, implying that all uj are zero,
or return that this is impossible by �nding a minimum value that is positive. In the �rst case, we
can use that set S in the original LP as a feasible starting solution, whereas in the second case,
we known that the instance does not have a feasible solution.

After we have solved the LP-relaxation using column generation, we can again construct an integral
solution using either rounding up or rounding down. Rounding up, however, can easily violate
Constraint 17, which states that we should not use too many heats in a given interval, whereas in
case of rounding down, assigning the remaining copies might become infeasible due to Constraint 17
as well, even for instances where the deadlines are not very strict. We can solve this by subtracting
some well-chosen ∆ from the righthand-side of Constraint 17. When ∆ is chosen large enough,
rounding up will return a feasible integral solution as well and thus also when rounding down a
feasible solution can be found. A basic choice for ∆ would be the minimum value such that no
matter what fractional solution we encounter, we can always round up and �nd a feasible integral
solution. There are n+k constraints, implying that at most n+k variables xs will have a positive
value in our solution, so choosing ∆ = n+k will certainly work. Note that this value can be rather
large, as we assume that all heat patterns will be concentrated in one interval. In practice, one
might change ∆ iteratively which can be dealt with very easily in the LP. However we did not
examine this in our experiments.

When rounding down, we can still use the DM-ILP where we apply binary search on H. The only
di�culty is to decide how to assign the additional H heats to the intervals. Luckily as we only
have deadlines, we can simply assign the heats to the �rst possible interval, as all possible heats
in a later interval can always be used in an earlier interval. In this way, we can still use binary
search on H to determine an optimal way of assigning the remaining copies. The DM+-ILP will
of course also work.

If the goal is not to minimize the total number of heats but to �nish as early as possible, then we
can use as our objective to minimize the number of heat patterns that must be used in interval
K, that is,

min
∑
s∈S

tsKxs;

this change in the objective function is easily dealt with.

If we have more than one, say C, crucibles, then we can apply the same strategy as we used in
Section 3. To each heat pattern s ∈ S we then assign a parameter qsc that gets the value 1 if



8 J. Hoogeveen et al.

heat pattern s is meant for crucible c. We can readily compute the maximum number of heat
patterns that can be applied for crucible c (c = 1, . . . , C) in period k (k = 1, . . . ,K), and add the
corresponding constraints to the LP. The pricing problem corresponds then to �nding the heat
pattern with minimum reduced cost for each interval and each crucible; we can �nd the best heat
pattern for all situations by one run of our Dynamic Programming algorithm.

Our �nal extension concerns the addition of release dates, which decree that the order cannot be
cast before the release date; one possible reason for having a release date may be that we need
some special equipment for casting that is not standard available. The presence of release dates
next to deadlines complicates the problem from a computational point of view. We can still work
with intervals, the borders of which now correspond to either a release date or a deadline. When we
solve the LP-relaxation, then we have to solve the pricing problem, which depends on the interval
as before. Unlike before, we must now run our Dynamic Programming algorithm for each interval
separately instead of using only one run, since the set of available orders can vary arbitrarily per
interval. This slows down solving the LP-relaxation drastically, as is shown in our computational
experiments. Once we have solved the LP-relaxation we can use the same rounding strategy as for
the case in which we only have deadlines. However when rounding down, we can not simply use
binary search on H any more, as it is unclear how to assign the heats to the intervals. We can still
use the DM+-ILP, which is what we did in our experiments.

5 Computational experiments

In this section, we perform some computational experiments to test the CG-ILP. For consistency,
we always start with the version of CG-ILP with the uj variables to �nd a feasible solution, even
though this is not required for instances without deadlines or release dates. Since CG-ILP returns
nearly optimal results, we mainly focus on the computation time. In each experiment, we run
our algorithm 10 times independently and report the average running time needed. We try both
rounding the solution up and rounding the solution down where, after rounding down, we always
use the DM+-ILP to assign the remaining items. We chose this option over the binary search on
H on DM-ILP as it also works with release dates, so it allows us to use the same strategy all the
time for consistency. We also report the number of columns (or heat patterns) that have been
generated when solving the LP-relaxation as this is an important metric for the computation time
needed and also illustrates how many heat patterns are actually explored. All experiments were
performed on a computer with an Intel I7 10th generation CPU. For solving the ILP, we used
Gurobi 11.0.2.

We will start by some basic instances from Deb and Myburgh (2016) as a proof of concept. After-
wards, we focus on the relation between the request values rj (j = 1, . . . , n) and the computation
time and show that unlike in the Genetic Algorithm or DM-ILP, the request values matter very
little for the computation time. Next we focus on the number of orders n to be molded. At the
end, we also consider release dates and deadlines: we assume that there are a few �priority orders"
that have to be molded in a very short interval. We test how this impacts the CG-ILP. Lastly, we
increase the capacities of the crucibles: this should make the pricing problem harder to solve as
the DP will take more time to solve, so we will test how much this impacts the computation time.
At the same time, this will also give insight in whether solving the pricing problem or maintaining
the LP is the bottleneck in our algorithm.

We start with the very basic example from Deb and Myburgh (2016), which can be found in their
Table 1: this instance contains 10 orders in which a total of 200 copies are requested. There is
only one crucible used per day with a capacity of 650 kg. Deb and Myburgh (2016) show that the
optimal number of heats is 31 in this instance. Both the DM-ILP and the Genetic Algorithm can
solve the instance optimally in around 0.05 seconds. Our CG-ILP formulation took 0.01 ± 0.001
seconds, which is faster and generated only 21 columns. However, it does not solve the problem
optimally due to rounding and instead returns a solution with 34 heats when we round up the
fractional values. If we round down instead of rounding up and place the remaining copies optimally



Title Suppressed Due to Excessive Length 9

using the DM+-ILP, we need 0.017 ± 0.002 seconds and we also �nd the optimal solution of 31
heats.

Deb and Myburgh (2016) also explore as a proof of concept what happens when this simple
instance is scaled up: there are still 10 orders, but instead of 20 copies requested per order, all
orders request 130 copies (apart from the �rst order, which requests 127 copies). In this case,
the optimal number of heats is 200. However the DM-ILP was unable to �nd the optimum even
when it ran for 15 hours. The Genetic Algorithm still performed very well and solved the problem
optimally in only 0.19 seconds. The CG-ILP solved the problem in only 0.012± 0.001 seconds and
again generated 21 columns. However it returned a solution with 203 heats rather than the optimal
200 heats due to the rounding up. Again, when we round down instead of rounding up, we �nd
the optimal solution with 200 heats in 0.016 ± 0.002 seconds. This very simple instance already
illustrates some key properties of the CG-ILP algorithm: it is very scalable or even independent
from the number of requested copies and it will return a solution which has generally a few heats
more than the optimum when we round up. When we round down, it generally �nds a slightly
better solution (and hopefully even an optimal one even though this cannot be guaranteed), but
that requires a little more time.

We will now examine a larger instance from Deb and Myburgh (2016), which can be found in their
Table 2: this instance contains 10 orders with a total of 550, 666 requested copies and a total weight
of 56, 352, 140 kg. We have two separate crucibles; the �rst one has a capacity of 650 kg, which is
used 10 times a day, whereas the second one has a capacity of 500 kg, which is used 13 times per
day. If we assume an integral number of days has to be used, we need at least 4337 days to melt
all the orders, which corresponds to 99, 751 heats. Unlike with the previous examples, Deb and
Myburgh (2016) do not aim to solve this problem to optimality, but only want to �nd a solution
that uses at most 100, 000 heats. Their Genetic Algorithm succeeds at this in approximately 5
minutes. In contrast, CG-ILP still only requires 0.01± 0.001 seconds to solve this problem, and it
also returns a solution with the optimal number of 4337 days with heats. It again only generates
21 columns. Also when we round down instead of up and solve the problem for the remaining
copies optimally, we only need 0.013± 0.002 seconds (and we also �nd the optimum).

Finally, Deb and Myburgh (2016) scaled this large instance up by a factor 1000 to achieve a �billion-
variable problem". Their Genetic Algorithm aimed to �nd a solution with at most 100, 000, 000
heats and it succeeded at this task. However, this took approximately 535, 503 seconds which is
over 6 days. We also tested CG-ILP on this very large instance. It needed 0.011 ± 0.001 seconds
again and solved the problem optimally by returning a solution with the minimum number of
4, 336, 319 days. Again only 21 columns are generated. Also when rounding down instead of up,
we only need 0.013± 0.002 seconds again.

We have tested CG-ILP even further and test the instance from Deb and Myburgh (2016) pre-
sented in their Table 2 scaled up with factors 1, 10, 100, 1000, 104, 105, 106, 107, 108, 109. Note that
the instance scaled up with factor 1000 is the largest instance examined in Deb and Myburgh
(2016), which contained one billion variables. In our Table 1 below, we show the computation time
needed for all instances. All instances are solved (almost) optimally: for the factor 100 and the
factor 108 instance we achieve a value of 1 above the optimum when rounding up and an optimal
solution when rounding down. All other instances are guaranteed to be solved to optimality as with
fewer days, not enough metal could possibly be molten to meet the required weight. We see that
all instances require about the same running time, even though the number of requested copies
drastically increases. Also the number of columns generated is the same (21) for all instances. This
clearly illustrates that the CG-ILP formulation is not really in�uenced by the number of requested
copies per order.



10 J. Hoogeveen et al.

Scale-Up Factor Rounding Up Rounding Down Columns Generated

1 0.011± 0.001 0.013± 0.002 21

10 0.012± 0.001 0.017± 0.003 21

100 0.01± 0.001 0.02± 0.002 21

1000 0.011± 0.001 0.014± 0.003 21

104 0.01± 0.001 0.018± 0.003 21

105 0.011± 0.001 0.018± 0.005 21

106 0.01± 0.001 0.02± 0.003 21

107 0.011± 0.001 0.016± 0.003 21

108 0.011± 0.001 0.019± 0.003 21

109 0.011± 0.001 0.015± 0.002 21

Table 1: The computation time needed in our scale-up study. All times are in seconds.

Below we tested the impact of the number of orders n. To do this, we created instances that had
the same crucibles as the large instances from Deb and Myburgh (2016): one crucible of weight 500
kg which is used 13 times per day and one crucible of weight 650 kg which is used 10 times per day.
We add n orders and for each order we draw its weight uniformly from [100, 650] and its number
of requested copies uniformly from [1, 1000]. We tried the values 10, 20, 50, 100, 200, 500, 1000 for
n. In our Table 2 below, we show the computation time in seconds that CG-ILP needs, both when
the fractional solution is rounded up and down. Remark here that the di�erence in computation
time is solely due to running the DM+-ILP to assign the lacking copies of the objects to additional
heats. We see that having more orders clearly increases the computation time. This is also easily
explainable as the number of columns generated increases too. We also see that rounding down
takes slightly longer than rounding up, just as expected as we need to solve another ILP afterwards.
The di�erence however is not very large, even though in theory the DM+-ILP becomes extremely
hard to solve for large n. This is probably mainly because there are far fewer requested copies in
our case as the large majority of copies have already been molded.

n Rounding Up Rounding Down Columns Generated

10 0.01± 0.001 0.017± 0.007 18.4± 2.109

20 0.019± 0.005 0.028± 0.013 40.5± 3.456

50 0.042± 0.01 0.045± 0.016 100.2± 10.679

100 0.255± 0.027 0.307± 0.025 226.9± 22.928

200 0.972± 0.064 1.16± 0.102 469.6± 30.361

500 8.192± 0.935 9.313± 1.075 1535.4± 169.915

1000 31.806± 10.634 35.568± 12.516 3478.8± 252.719

Table 2: The e�ect of the number of orders on the computation times. All times are in seconds.

Next, we added deadlines. We have n orders with random weights from [100, 500] and a random
number of requested copies from [100000, 200000]. We again have two crucibles: one of size 650
kg and one of size 500 kg that are used 10 and 13 times per day, respectively. We further add a
deadline to all orders. We do this in such a way that until the deadline of order 1, we have enough
capacity to melt 3 times the needed weight of metal for all copies of order 1. In the same way, we
pick deadline 2 such that we have exactly enough capacity until deadline 2 to melt 3 times the
needed weight of metal for all copies of orders 1 and 2, and so on for all deadlines. Note that we
need the rather large number of requested copies as otherwise the impact of ∆ on the number of
available days becomes too large and some instances might become infeasible. In practice, a lower



Title Suppressed Due to Excessive Length 11

∆ could be used to solve this problem, but we did not examine that option here. In our Table
3 below, we show the computation time needed by CG-ILP for these instances. For n we tried
10, 20, 50, 100, 200, 500, 1000 just as before. We also show the result both when we round up and
round down. We see just like in our Table 2 that the computation time highly depends on the
number of orders n. The increase in computation time is not that high, probably because we can
very e�ciently solve the pricing problem when we only have deadlines.

n Rounding Up Rounding Down Columns Generated

10 0.023± 0.004 0.033± 0.006 38± 3.629

20 0.039± 0.007 0.076± 0.014 88.7± 9.977

50 0.191± 0.016 0.401± 0.033 240.4± 14.546

100 0.899± 0.08 1.748± 0.144 537.5± 23.916

200 4.552± 0.194 8.996± 0.369 1126.9± 27.048

500 54.413± 6.521 88.595± 6.712 3012.2± 172.46

1000 508.424± 29.748 654.367± 73.754 6539.9± 98.301

Table 3: The computation time needed by our improved ILP when we add deadlines to the n
orders. All times are in seconds.

Next, we tested our algorithm on a set of instances to which we added both deadlines and release
dates. Just as before, there are n orders with random weights from [100, 500] and a random
number of requested copies from [100000, 200000]; for melting we have two crucibles of size 650
kg and 500 kg. However, in this case, half of the orders has neither a deadline nor release date,
whereas the other half has a narrow interval in between it must be cast. The interval is exactly
long enough to melt 3 times the required weight in metal, where the start time of the interval
is chosen randomly from [1, 100000 · n]. We tried the values 10, 20, 50, 100 for n, since for this
type of problems with release dates, CG-ILP requires considerably more time. In our Table 4, we
tabulated the needed computation time and the number of generated columns. Just as before,
we see that the computation time depends greatly on the number of orders n; for this type of
problems with both release dates and deadlines, the computation time increases even faster when
n increases. However we see that the number of generated columns does not increase very fast and
is comparable to our Table 3 with only deadlines. The di�erence between computation time and
number of generated columns is probably mainly caused by the pricing problem becoming harder
to solve: now we have O(n) intervals and for all of them, we have to solve the resulting instance
of the Knapsack problem separately, so the computation time for solving the pricing problem
increases by a factor n.

n Rounding Up Rounding Down Columns Generated

10 0.053± 0.006 0.065± 0.006 42.5± 4.447

20 0.311± 0.028 0.35± 0.023 97.7± 7.281

50 4.806± 0.523 5.074± 0.579 267.9± 19.898

100 40.752± 3.309 41.277± 3.398 557.6± 41.468

Table 4: The computation time needed by our improved ILP when we both have deadlines and
release dates. All times are in seconds.

Finallly, we increased the capacities of the crucibles to test how much this impacts the running
time of CG-ILP. For our set of orders we use the large instance from Deb and Myburgh (2016)



12 J. Hoogeveen et al.

as presented in their Table 2; this is the instance with scale-up factor 1 in our Table 1. We also
use the same two crucibles, but we scale up their capacities with factors 1, 2, 5, 10, 20, 50, 100. We
again tried both rounding up and rounding down and recorded the number of columns needed.
In our Table 5 below, the results can be found. All instances are solved optimally, except factors
20 and 50 for which rounding up returns a solution with one day more than the optimum; the
optimum is found when we round down, though. We see that, as expected, the computation
time increases, although especially for low factors, this increase is rather slow. This is probably
caused by the fact that for small weights, solving the pricing problem can be done very fast
and most time is spent on the LP itself. Also we see that the number of generated columns
decreases when the weights increase, which also makes the problem easier to solve. From around
factor 10, we see an almost linear increase since from then onwards, which indicates that the
computation time is mainly spent on solving the pricing problem. Still the problem remains solvable
ihttps://www.uu.nl/en/events/beyond-technology-utrecht-ai-eventn less than 1 second, even when
the crucibles have a high capacity.

Scale-Up Factor Rounding Up Rounding Down Columns Generated

1 0.013± 0.004 0.015± 0.004 21

2 0.015± 0.002 0.017± 0.002 19

5 0.022± 0.002 0.026± 0.002 18

10 0.033± 0.002 0.037± 0.004 17

20 0.057± 0.006 0.065± 0.006 17

50 0.123± 0.009 0.128± 0.008 17

100 0.245± 0.009 0.253± 0.012 17

Table 5: The impact of increasing the size of the crucibles on the computation time of our improved
ILP. All times are in seconds.

6 Conclusion

In this paper we have shown how the casting problem can be formulated using an ILP formulation
based on so-called heat patterns, which specify the number of copies for each order that can be
cast using the iron that is melted during one heat. For this ILP formulation we �nd a solution by
solving the LP-relaxation using column generation followed by rounding; this solution provably
uses a number of heats that is very close to the theoretical minimum number of heats required.
Since this can be done within a second for the instances presented by Deb and Myburgh (2016)
instead of using a week to show existence of a worse solution, we have clearly refuted the claim
by Deb and Myburgh (2016) that instances of real-life size cannot be solved by ILP. The main
improvement of our ILP is that it treats the number of times a heat pattern is used as a variable,
instead of a parameter that impacts the size of the ILP. As a result working with an extremely
large number of copies per order does not make the slightest di�erence. The number of orders
does impact the size of the ILP and thus the computation time, but still instances with up to 1000
orders can be solved in half a minute. A similar remark holds for the capacity of the crucibles;
problem instances with capacities that are scaled up by a factor 100 can still easily be solved within
a second. Finally, we have shown how our approach can deal with deadlines and eventually release
dates. Adding release dates next to deadlines makes the LP-relaxation much harder to solve, since
the pricing problem becomes much harder to solve. Still, we can solve instances with up to 100
orders in less than a minute.

References

1. K. Deb, A.R. Reddy, and G. Singh (2003). Optimal scheduling of casting sequence using genetic



Title Suppressed Due to Excessive Length 13

algorithms. Materials and Manufacturing Processes 18, pp. 409�432.
https://doi.org/10.1081/AMP-120022019

2. K. Deb and C. Myburgh (2016). Breaking the billion-variable barrier in real-world optimization
using a customized evolutionary algorithm. GECCO '16: Proceedings of the Genetic and Evolutionary

Computation Conference 2016, pp. 653�660.
https://doi.org/10.1145/2908812.2908952

3. P.C. Gilmore and R.E. Gomory (1961). A linear programming approach to the cutting-stock
problem. Operations Research 9, pp. 849�859.
https://pubsonline.informs.org/doi/10.1287/opre.9.6.849

4. P.C. Gilmore and R.E. Gomory (1963). A linear programming approach to the cutting-stock
problem - Part II. Operations Research 11, pp. 863�888.
https://www.jstor.org/stable/167827

5. P.C. Gilmore and R.E. Gomory (1965). Multistage cutting stock problems of two and more
dimensions. Operations Research 13, pp. 94�120.
https://www.jstor.org/stable/167956

6. L.V. Kantorovich (1960). Mathematical methods of organizing and planning production. Man-

agement Science 6, pp. 366�422.
https://www.jstor.org/stable/2627082

7. H. Kellerer, U. Pferschy, and D. Pisinger (2004). Knapsack problems, Springer-Verlag,
Berling-Heidelberg.


