
Robustifying RL Agents for Safe Transfer
through Action Disturbances

Markel Zubia1, Thiago D. Simão2, and Nils Jansen1,3

1 Ruhr University Bochum, Germany
2 Eindhoven University of Technology, The Netherlands

3 Radboud University Nijmegen, The Netherlands

Abstract. Reinforcement learning (RL) often relies on trial and error,
which may cause undesirable outcomes. As a result, standard RL is inap-
propriate for safety-critical applications. To address this issue, one may
train a safe agent in a controlled environment (where safety violations
are allowed) and then transfer it to the real world (where safety vio-
lations may have disastrous consequences). Prior work has made this
transfer safe as long as the new environment preserves the safety-related
dynamics. However, in most practical applications, differences or shifts
in dynamics between the two environments are inevitable, potentially
leading to safety violations after the transfer. This work aims to guaran-
tee safety even when the new environment has different (safety-related)
dynamics. In other words, we aim to make the process of safe transfer ro-
bust. Our methodology (1) robustifies an agent in the controlled environ-
ment and (2) provably provides—under mild assumption—a safe transfer
to new environments. The empirical evaluation shows that this method
yields policies that are robust against changes in dynamics, demonstrat-
ing safety after transfer to a new environment.

1 Introduction

A prevalent strategy to render reinforcement learning [RL, 28] safe involves the
use of transfer learning, where agents are initially trained in a controlled training
environment, such as a simulation or laboratory. Since unsafe interactions with
the controlled environment pose no real harm, these agents can be trained via
standard safe RL methods. The intention is to later transfer these trained agents
to target environments where safety may be imperative [11, 23].

While numerous works have successfully maintained safety after transferring
from a controlled training environment to the target [32, 10, 12, 16], their the-
oretical guarantees of safety rely on the strong assumption that safety-relevant
dynamics remain unchanged between the two environments. However, the target
environment likely differs from the training environment. Therefore, robustness
to changes or shifts in dynamics plays a crucial role in realistic settings involving
safety [21].

Problem statement. This work aims to train an agent in a controlled
environment (where safety violations are allowed) to maintain safety throughout



2 M. Zubia et al.

transfer

source (controlled environment) target (real world)

source
dynamics

guide guidestudent unknown
dynamics

disturbance

Fig. 1: Training the guide under action disturbances in the source task and trans-
ferring it to teach the student in a target task with unknown dynamics.

the process of transfer-learning, even under the worst-case transition dynamics
in the new environment.

Taking inspiration from the method developed by Yang, Simão, Jansen, Tin-
demans, and Spaan [32], we focus on a setting where an agent is trained within
a reward-free environment, called the source task (⋄). Here, the agent learns
to navigate the environment safely without a reward signal. To account for po-
tential differences in dynamics, we robustify this agent during the training in
the source task by adding different kinds of action disturbances. These try to
mimic changes in dynamics (different friction, mass, etc.) that would happen
in an actual sim-to-real transfer setting, as these changes in dynamics can be
viewed as additional disturbances in the system [4]. More specifically, we use
randomly sampled action noise [13], adversarial action noise [30], and entropy
maximization [37, 9]. Subsequently, this trained agent is transferred to a differ-
ent environment, called the target task (⊙), where the reward is revealed. The
trained agent, referred to as the guide, is then used to train a new agent, the
student, while making sure that no safety-violations occur during training, as
visualized in Figure 1.

Contributions. The key contributions of this paper are: 1. Introduce a
mathematical framework for modeling robustness in the context of safe transfer
learning. 2. Examine and compare how robustness during transfer is affected
by entropy maximization, action noise, and adversarial action perturbations.
3. Propose an adaptation of an algorithm for safe transfer-learning developed
by Yang, Simão, Jansen, Tindemans, and Spaan [32] that accounts for uncer-
tainties in the target environment. 4. Empirically and qualitatively analyze the
proposed algorithm.

The empirical analysis shows that guides trained with action disturbances
tend to have lower worst-case cumulative costs without compromising their over-
all performance. Furthermore, guides that are robust to changes in dynamics in
the source task are better at transferring knowledge in challenging environments,
with some achieving completely safe transfers, unlike non-robust ones.



Robustifying RL Agents for Safe Transfer through Action Disturbances 3

2 Related Work

Safety in RL. Traditionally, in RL, unsafe behavior is avoided through reward
shaping by integrating the safety-related information into the reward signal [17].
However, such approaches demand significant engineering effort [15, 24]. To avoid
reward engineering, safety can be imposed through constraints [11]. The litera-
ture provides multiple types of constraints [31]. For instance, state-wise safety
involves establishing state-specific hard constraints [35, 33]. Shielding is an exam-
ple of a state-wise safe algorithm, where unsafe actions are blocked at runtime [2,
7]. We focus on constraints in expectation, which allow a good trade-off between
safety and performance [3].

Robust MDPs. Robustness is an essential component in sequential decision-
making tasks when the transition function is unknown [27, 8, 22]. Robust con-
strained Markov decision processes (RCMDP) consider a set of potential transi-
tion dynamics, called uncertainty set [25]. An agent is robustified in this frame-
work by iteratively exposing it to the worst-case dynamics. Methods for solving
RCMDPs involve computing the worst-case using linear programs [25], training
an adversary to suggest such dynamics [6], as well as combining homotopy con-
tinuation with bisection methods [5]. In contrast with the RCMDP framework,
we assume that the uncertainty set is unknown during training, to reflect realis-
tic scenarios. We aim to train agents that are capable of generalization in order
to complete the task in an environment with newly revealed dynamics.

Adversarial training. Adversarial training is a common method of achiev-
ing robustness [22]. We may adversarially perturb observations by adding noise
to sensors [20, 34], or the dynamics of the environment, for instance, by ap-
plying adversarial physical forces to the agent [19]. We adopt perturbations to
the agent’s actions, as preliminary benchmarks showed that they consistently
yielded the best results in our setting.

3 Background

This section covers the theoretical foundations of our method.
Constrained Markov decision processes. A constrained Markov decision

process [CMDP, 3] is characterized by a tuple M = (S,A, P, r, c, d, γ), where S
is the state space, A is the action space, P : S × A → Distr(S) is the transition
probability function with Distr(S) being the set of probability measures on the
Borel sets of S, r : S × A → R+ is the reward function, c : S × A → R+ is the
cost function, d ∈ R+ is the cost-budget, and γ ∈ [0, 1) is the discount factor.
A stationary stochastic policy is a function π : S → Distr(A) that suggests an
action given the current state. We define the set of stationary stochastic policies
as Π. The expected cumulative reward of policy π in state s over a finite horizon
of length T is V π(s) = Eπ

[∑T
t=1 r(st, at)γ

t
]
, and the expected cumulative cost

is defined similarly as Cπ(s) = Eπ

[∑T
t=1 c(st, at)γ

t
]
. The goal of the CMDP

framework is to find an optimal policy π∗, that is, a policy that maximizes the



4 M. Zubia et al.

expected cumulative reward while keeping the expected cumulative cost below
d for all states s ∈ S:

π∗ ∈ argmax
π∈Π

V π(s) s.t. Cπ(s) ≤ d.

We also define the expected return as Qr
π(s, a) = Eπ

[∑T
t=0 γ

tr(st)
]
, and the

expected cost-return, Qc, is defined analogously.
Safe transfer-learning. In the transfer learning framework for RL, an

agent must leverage the knowledge gained from the source task (⋄) to learn the
target task (⊙) more efficiently [36]. Said tasks are modeled by CMDPs in safety-
critical applications, where the constraints model aspects concerning safety [11,
23]. [32] propose a reward-free source task M⋄ = (S⋄, A⋄, P ⋄, ∅, c⋄, d⋄, γ), where
one can train an agent called the guide, with policy π⋄, that can safely nav-
igate it without relying on a reward signal. This trained guide can then be
used to train the student agent, with policy π⊙, in the target task M⊙ =
(S⊙, A⊙, P⊙, r⊙, c⊙, d⊙, γ).

Various transfer metrics exist for evaluating the extent to which one agent
benefits from leveraging the knowledge of another agent [29, 32]. One such metric
is safety jump-start, which measures the difference in cumulative costs during
the initial epoch between an agent that uses prior knowledge and one learning
from scratch. Similarly, ∆ time to safety assesses the difference in time required
to reach safe behavior. Analogously, return jump-start and ∆ time to optimum
concern the reward signal.

4 Robust Safe Transfer-Learning Framework

This paper focuses on training a guide in the source task and transferring it to a
target task that has different dynamics, which are unknown during the training
of the guide, to then train a student while avoiding safety violations. Our source
task is modeled by a reward-free CMDP M⋄ = (S⋄, A⋄, P ⋄, ∅, c⋄, d⋄, γ) as already
introduced in the previous section. Since the dynamics of the target task are not
known, we choose a more robust model. In particular, we model the target task
as a CMDP where the transition function has been replaced by a set of possible
transition dynamics functions, M⊙ = (S⊙, A⊙, U⊙, r⊙, c⊙, d⊙, γ), where every
P⊙ ∈ U⊙ is a dynamics function P⊙ : S⊙ × A⊙ → Distr(S⊙). We refer to U⊙

as the uncertainty set. One possible instance of such an uncertainty set is to
define intervals of probabilities on transitions, creating infinitely many potential
dynamics of the target task.

4.1 Safety guarantees in worst-case environments

Since the intention is to transfer the policy of the guide, π⋄, from M⋄ to M⊙,
both environments should share the same action space:

Assumption 1. A⋄ = A⊙ = A.



Robustifying RL Agents for Safe Transfer through Action Disturbances 5

Additionally, notice that the guide can only process observations from the
source task’s state space S⋄. Thus, to transfer the guide to the target task, we
need to be able to map the state space of the target task to the source space
of the target task. In particular, we are interested in cases where this mapping
preserves information about the dynamics concerning safety to guarantee a safe
transfer. This concept is introduced by Li, Walsh, and Littman [18]:

Definition 1. Function σ : S → S† is a Qc-irrelevant abstraction for M =
(S,A, P, r, c, d, γ) iff ∀s, s′ ∈ S,∀a ∈ A,∀π ∈ Π, σ(s) = σ(s′) ⇒ Qc

π,M(s, a) =
Qc

π,M(s′, a).

Similar model-invariant abstractions have been used in the CMDP setting to
guarantee that safety constraints are satisfied [26]. Now, we assume that such a
mapping exists from S⊙ to S⋄, and that this function is well-behaved, meaning
it is continuous and bounded:

Assumption 2. There is a Qc-irrelevant abstraction σ : S⊙ → S⋄ for M⊙ that
is continuous and bounded.

To clarify, even though σ maps the states in the target task to states in the
source task, it does not imply that the dynamics in the two tasks are similar,
and it in fact does not concern the source task’s dynamics in any manner. More
precisely, Assumption 2 implies that the states in the target task can be mapped
to the states in the source task, where the information about the target task’s
dynamics is preserved, but the source task’s dynamics are not referenced and
could thus be vastly different from those of the target task.

We have not yet imposed any restrictions on the uncertainty set, which means
that the various dynamics transition functions in this set could potentially be
infinitely different from each other. Therefore, it is reasonable to disallow this
by supposing that the uncertainty set is bounded:

Assumption 3. U⊙ is bounded, that is, ∃ε ∈ R,∀P, P ′ ∈ U⊙, ∥P − P ′∥ ≤ ε.

The three assumptions introduced so far are enough to show that a guide
that is safe in the source task will also be safe in the worst-case dynamics in the
target task, as later proven in Theorem 1.

First, given an arbitrary Qc-irrelevant abstraction σ, we consider how this
function can map any CMDP to a new CMDP, the latter being referred to as
the abstracted task [18].

Definition 2. Let σ : S → S†, M = (S,A, P, r, c, d, γ), and ω : S → [0, 1]. The
corresponding abstracted task is M† = (S†, A, P †, r†, c†, d, γ), where

– P †(s′† | s†, a) = ∑
s∈σ−1(s†)

∑
s′∈σ−1(s′†) ω(s)P (s′ | s, a),

– r†(s†, a) =
∑

s∈σ−1(s†) ω(s)r(s, a),
– c†(s†, a) =

∑
s∈σ−1(s†) ω(s)c(s, a),

with σ−1(s†) = {s ∈ S | σ(s) = s†} and
∑

s∈σ−1(s†) ω(s) = 1, for all s† ∈ S†.



6 M. Zubia et al.

δ

M⋄ M⊙

U⊙σ(U⊙)
σ

P ⋄

ε

Fig. 2: Visualization of the space of dynamics functions from Theorem 1.

Intuitively, σ strips away information that is not safety-relevant, to return a
new abstracted CMDP where the dynamics concerning safety are the same as in
the initial CMDP. Therefore, one can formally prove that an agent that is safe
in the initial task is also safe in the abstracted task, as has been already done
by Abel, Hershkowitz, and Littman [1]:

Lemma 1. Let σ : S → S† be Qc-irrelevant, and tasks M = (S,A, P, r, c, d, γ)
and M† = (S†, A, P †, r†, c†, d, γ) constructed as in Definition 2. Then, ∀s ∈
S,∀a ∈ A,∀π ∈ Π†, Qc

π,M†(σ(s), a) = Qc
π◦σ,M(s, a). ⊓⊔

In the following theorem, we prove that an agent that is robust against
changes in dynamics in the source task will retain part of this robustness when
transferred to the target task:

Theorem 1. Given Assumptions 1, 2, and 3, if d⋄ ≤ d⊙ then there exists δ ∈ R
such that if policy π is safe in M⋄

P for all P where ∥P − P ⋄∥ ≤ δ, then π ◦ σ is
safe in M⊙

P ′ for all P ′ ∈ U⊙.

Proof. Since U⊙ is bounded (Assumption 3) and σ is well-behaved (Assumption
2), there exists

δ = max
P ′∈U⊙

∥P ⋄ − σ(P ′)∥,

where we overload σ : Distr(S⊙)S
⊙×A → Distr(S⋄)S

⋄×A. Now, suppose that π is
safe for all P with ∥P −P ⋄∥ ≤ δ, that is, Qc,⋄

π,P (s, a) ≤ d⋄. Then, for all P ′ ∈ U⊙,
we have Qc,⋄

π,σ(P ′)(s, a) ≤ d⋄ by construction of δ. Thus, Qc,⊙
π◦σ,P ′(s, a) ≤ d⋄ ≤ d⊙

given Lemma 1 and premise d⋄ ≤ d⊙.

This proof is visualized in Figure 2. Theorem 1 justifies increasing δ in the
source task with robustification methods before transferring to a target task with
uncertain dynamics, which is an essential component in the method we introduce
in Section 5.



Robustifying RL Agents for Safe Transfer through Action Disturbances 7

4.2 Robust transfer metrics

Key insight. While an agent that is robust in the source task will also be
robust in the target task, as shown in Theorem 1, this is not enough to be
able to perform the transfer of knowledge successfully. To illustrate, notice that
in many environments the “do nothing” policy is safe everywhere in U⊙, even
though it is clear that this policy provides no value to train an agent in the target
task. Thus, sometimes an agent that prioritizes exploration while taking more
risks may be more useful for training another agent in the target task, compared
to an overly conservative one, resulting in an overall lower cumulative cost. This
serves as motivation for introducing metrics that measure the usefulness of the
guide’s knowledge from the perspective of safety and robustness.

Let’s say that algorithm Φ uses the knowledge from the agent trained in
the source task, π⋄, to train a new agent π⊙ in the target task. To do so,
the algorithm needs to sample K trajectories of length L in M⊙, generating
a history of environment interactions {ρi}i=1...,K . Since the algorithm may be
nondeterministic, we have a history of probability distributions over the space of
trajectories, in other words, ρi ∈ Distr((S×A)∗×S). This is expressed compactly
as Φ(π⋄,M⊙) = {ρi}i=1...,K , and we denote learning from scratch as Φ(∅,M⊙).

Various transfer metrics exist for evaluating to which extent the target policy
π⊙ benefits from leveraging the knowledge of π⋄ [29], some of which have been
adapted to account for safety by Yang, Simão, Jansen, Tindemans, and Spaan
[32]. As these metrics have only been defined informally in prior work, we next
provide rigorous definitions.

Definition 3. Given Φ(π⋄,M⊙) = {ρi} and Φ(∅,M⊙) = {ρ′i}, the safety jump-
start is defined as

J(π⋄,M⊙) = E
[
c(τ)− c(τ ′)

c(τ ′)

∣∣∣∣ τ ∼ ρ1, τ
′ ∼ ρ′1

]
,

where c((s1, a1, . . . , sL+1)) = max(d⊙,
∑L

i=1 γ
ic(si, ai)).

In other words, the safety jump-start measures the difference in excess cumula-
tive costs during the initial trajectory or epoch between an agent that uses prior
knowledge and one learning from scratch.

Definition 4. The ∆ time to safety assesses the difference in time required to
reach safe behavior. Given Φ(π⋄,M⊙) = {ρi} and Φ(∅,M⊙) = {ρ′i}, the metric
is defined as

C(P, π⋄) = E [m({τ ′i})−m({τi}) | τi ∼ ρi, τ
′
i ∼ ρ′i] ,

where m({τi}) = mint=1,...,L t such that ∀t′ ≥ t, c(τt′) ≤ d⊙.

Definition 5. Analogously to the safety jump-start and ∆ time to safety, the
return jump-start and ∆ time to optimum concern the reward signal, respectively
denoted by B(M⊙, π⋄) and R(M⊙, π⋄).



8 M. Zubia et al.

The transfer-learning problem at hand is to train the guide in a reward-
free source task modeled by a CMDP, M⋄, to later use it to learn a student
policy in the target task modeled by a CMDP, M⊙, with uncertainty set U⊙.
It is important to bear in mind that M⊙ is completely inaccessible during the
training of the guide in M⋄, meaning that the guide cannot interact with U⊙

during training.
Formal statement of the problem. Given a reward-free source CMDP

M⋄ and a target CMDP M⊙ with uncertainty set U⊙, maximize the worst-case
safety jump-start while keeping ∆ time to optimum above a threshold dr:

π∗ = argmin
π∈Π

max
P∈U⊙

J(P, π) s.t. R(P, π) ≥ dr.

Even though the problem statement only includes the safety jump-start and ∆
time to optimum of the guide, we are interested in measuring the ∆ time to
safety and return jump-start as well.

Definition 6. Given π ∈ Π, the worst-case transition dynamics is

P+ = argmax
P∈U⊙

J(P, π).

In practice, estimating the worst-case transition dynamics may require eval-
uating a policy within various P ∈ U⊙ and picking the environment that yields
the highest cost. Therefore, notice that we are likely to choose outliers through
this process, causing the approximate worst-case safety jump-start to have high
variance. In an attempt to mitigate this issue, rather than selecting only one
environment, one can pick a portion p ∈ [0, 1] of the environments where the
agent performs the worst. The following definition formalizes this concept.

Definition 7. For p ∈ [0, 1], the p-tail of the safety jump-start is

J≤p(M⊙, π) =

∫
B

J(M⊙
P , π) dP,

if there exists y ∈ R such that ∥B∥
∥U∥ = p, with B = {P ∈ U⊙ | J(M⊙

P , π) ≥ y}.

Additionally, J≤1(M⊙, π) is the average performance of π within the entirety
of U⊙. So, while the problem statement does not include the p-tail and average
performance, we will keep track of these in the empirical analysis.

5 Robust Guided Safe Exploration

Our method trains a robust guide via action disturbances in the source task and
transfers it to the target task to train the student safely.



Robustifying RL Agents for Safe Transfer through Action Disturbances 9

5.1 Training the guide

Since the source task is a reward-free CMDP, M = (S,A, P, ∅, c, d, γ), it is likely
that an agent trained in this environment would learn to “do nothing”, as it
would only need to satisfy the safety constraints. Therefore, we use a distance
bonus to encourage the guide to explore the environment:

rb(st, at) = E
[
∥s‡t − s‡t+1∥

∣∣∣ st+1 ∼ P (st, at)
]
,

where ∥ · ∥ : S‡ → R is a norm and (·)‡ is a state abstraction function.
The idea of having an abstracted space S‡ is that not all features of an

observation s ∈ S are relevant for exploration, and we may only need to include
some selected dimensions of S. For instance, an agent that can observe its global
position and its orientation may only want to use its global position for the
distance bonus.

To transfer the guide to the uncertain target task, we must first robustify it
during its training in the source task. We employ three domain-agnostic robus-
tification techniques.

Entropy maximization. To maximize the entropy of the agent, we include
the following term in the reward signal r⋄t (st, at) = rbt (st, at) + αrHt (st, at),
where rHt (st, at) = log 1

π(at|st) .
Random action noise. Instead of sampling the action directly from the agent,

some random noise is added: a ∼ (1− α)π(st) + αN (µ, σ).
Adversarial perturbations. The guide is trained in a noisy action robust

MDP [30]: a ∼ (1 − α)π(st) + απ̄(st), where the guide is trying to max-
imize the objective r⊙t = rbt while satisfying the cost constraints, and the
adversary is trying to maximize the cumulative cost.

5.2 Transferring knowledge to the student

To transfer the knowledge of the guide to the student, our approach is similar
to [32]. We want to ensure safety throughout by sampling from the student
whenever the cost signal is zero, and otherwise we sample from the guide:

πb(st) =

{
(π⋄ ◦ σ)(st) if ct > 0,

π⊙(st) else.

It is desirable to let the student’s policy imitate the guide’s whenever the
cumulative cost is above the safety threshold, while this is not necessary once
the student behaves safely. We achieve this effect by adding a new term r∼t to
the reward signal measuring the similarity between the two policies, weighted
by the Lagrangian multiplier, λ. When both policies are nondeterministic, r∼t
measures the KL divergence between the two distributions. Otherwise, if either
policy is deterministic, we compare the deterministic action with the mean of
the nondeterministic policy’s distribution.



10 M. Zubia et al.

0

500Cost

Maximize Entropy Adversarial Perturbation Random Perturbation

env1
env3
env2

0,0
1e

-05
0,0

010,0
1 0,1 0,2 0,5 1,0 1,5 10

,0

α

10

20

Return

0,0
6

0,1
2

0,1
7

0,2
3

0,2
9

0,3
5

α
0,0

6
0,1

2
0,1

7
0,2

3
0,2

9
0,3

5

α

Fig. 3: The cost and return in the last epoch of each type of guide.

6 Empirical Analysis

We train one guide for each method of robustification (Section 5.1). Our empir-
ical analysis aims to answer the following questions:

1. How does each guide perform in the source task?
2. How does each guide perform in the target task’s worst-case dynamics?
3. What is the safety jump-start of each guide in the target task?
4. How is the full training of the student affected by the guide’s robustness?

We evaluate our method on benchmark environments created using a frame-
work for safe reinforcement learning called Safety-Gymnasium [14]. In these envi-
ronments, the RL agent controls a robot that must reach the goal while avoiding
the hazards. Appendix B provides more details.

The source tasks. There are three source tasks: (M⋄
1,M⋄

2, and M⋄
3). These

environments may contain static obstacles called hazards and dynamic obstacles
called vases, which are always constrained. Additionally, all three environments
have constrained walls to discourage the agent from going out of bounds. The
environments differ as follows: M⋄

1 has 1 hazard located in the center; M⋄
2 has

5 hazards that change location every epoch, and M⋄
3 has 8 hazards and 8 vases

that change location every epoch.

The target tasks. The target environments M⊙
1 , M⊙

2 , and M⊙
3 are similar to

their respective source environments M⋄
1, M⋄

2, and M⋄
3, except for two major

differences.

1. The task in the target environments is to reach a specific location, called
the goal. Therefore, the observations in the target tasks have the additional
measurements that concern the reward signal: a LIDAR in [0, 1]16 for de-
tecting the goal. We have a mapping σ : S⊙ → S⋄ which simply strips away
the information concerning the reward signal. It is easy to show that σ is a
Qc irrelevance abstraction, satisfying Assumption 2.



Robustifying RL Agents for Safe Transfer through Action Disturbances 11

2. The transition dynamics function in the target tasks is uncertain. In our prac-
tical implementation, this is achieved by modifying the physics parameters
concerning the friction and mass of the agent in the simulated environments.
The friction refers to the force that opposes the motion of the robot, and a
higher friction value causes the agent to decelerate quicker. The mass of the
agent affects its moment of inertia, meaning that it impacts how quickly the
agent can change its velocity.
One can define the function u : R2 → (S⊙ × A → Distr(S⊙)) that maps
the friction and mass of the agent to the corresponding transition dynamics
function. Thus, notice that u is continuous and bounded, which implies that
U is bounded, satisfying Assumption 3.

6.1 Performance of the guides in the source task

We train various guides with the three robustification techniques: random action
noise, adversarial action perturbations, and entropy maximization. The guides
are trained with different weights of the robustification methods to see which
values of these parameters yield the best outcomes. The ranges of these weights
are based on the results of prior work [30, 20]: the random noise is weighted
by α ∈ {0.06, 0.12, 0.17, 0.23, 0.29, 0.35}; the adversarial perturbation weights
are α ∈ {0.06, 0.12, 0.17, 0.23, 0.29, 0.35}; and the entropy bonus is weighted by
α ∈ {10−5, 10−3, 10−2, 0.1, 0.2, 0.5, 1.0, 1.5, 10.0}.

Figure 3 shows the cumulative returns and costs at the very last epoch of
the three kinds of agents trained with the different values of the robustification
weights. Most guides learn a safe policy that obtains a cumulative reward slightly
below 20, except for the entropy-maximizing agent when α ≥ 0.1, which does
not learn a proper policy, presumably due to the overly high entropy.

6.2 Guides’ performance in the target task’s worst-case dynamics

The uncertainty set (U⊙) consists of uncountably many dynamics transition
functions, parameterized by the mass (m) and friction (η) of the agent, making
it challenging to compute the worst-case dynamics. Therefore, we restrict the
uncertainty set to a finite subset (Ū⊙) by discretizing the values of the parame-
ters to m = m1, . . . ,mN , and η = η1, . . . , ηN . In our experiments, we use N = 8
values for each parameter by letting mi = (0.5+ i−1

7 )m⋄ and ηi = (0.5+ i−1
7 )η⋄

for i = 1, . . . , 8, where m⋄ and η⋄ correspond to the dynamics in the source task.
First, we evaluate all guides within their respective source tasks, but instead

of using the source task’s dynamics (P ⋄), we evaluate them within the discretized
uncertainty set of the target task, Ū⊙. This experiment provides insights into the
relationship between the different robustification algorithms and the robustness
they provide. Figure 4 shows the cumulative costs of a robust and non-robust
agent evaluated in the dynamics functions of the discretized uncertainty set.

The robust guide can navigate the source task safely even when the dynamics
are unfavorable, while the non-robust agent struggles to maintain a safe expected
cost when the shift in dynamics is large.



12 M. Zubia et al.

Heatmaps like the ones shown in Figure 4 have been computed for all three
robustification methods and different values of α, and they can be seen in Ap-
pendix E. Once these heatmaps are calculated, it is easy to obtain the worst-case
expected cost, as well as the p-tail and the average, shown in Tables 2, 3, and 4.
It is crucial to note that the values shown in the tables are the expected costs of

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Mass

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fr
ic

tio
n

0

5

10

15

20

25

30

35

40

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Mass

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fr
ic

tio
n

0

5

10

15

20

25

30

35

40

Fig. 4: The expected cumulative costs in M⋄
1 of a guide trained with no action

noise (left) and a guide with an action noise of α = 0.29, each dot representing a
different dynamics function, with mass on the x-axis and friction on the y-axis.

one batch of guides, implying that conclusions cannot be drawn from the com-
parison the values of α during training with their respective costs, due to a lack
of statistical significance. Nevertheless, since the expected costs are computed
quite accurately, it is correct to claim that some guides are more robust than
others, which will be useful in the next sections to measure how the robustness
of the guide impacts the student’s training in the target task.

6.3 Safety jump-start of each guide in the target task’s worst-case
dynamics

The safety jump-start assesses the difference in cumulative costs during the first
epoch between the student learning from a guide and one learning from scratch.
Measuring the safety jump-start is computationally cheap compared to other
metrics, as it requires training the student for only one epoch as opposed to
fully training said student.

We transfer the knowledge of the guides to two kinds of students: a nonde-
terministic student (SAC) and a deterministic one (DDPG). One major problem
with transferring the knowledge to a deterministic student is that it is much like-
lier to end up in unrecoverable states by selecting the same actions over and over,
rendering the control-switch rescue method completely ineffective. To lessen this
issue, the deterministic student is trained with a relatively high random action
noise of α = 0.75.



Robustifying RL Agents for Safe Transfer through Action Disturbances 13

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Mass

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fr
ic

tio
n

0

5

10

15

20

25

30

35

40

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Mass

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fr
ic

tio
n

−100

−75

−50

−25

0

25

50

75

100

Fig. 5: Expected cumulative cost in the source task (left) and the safety jump-
start in the target task as a percentage (right) of the agent trained with α = 0.29
within M1. Low values of the safety jump-start are desirable, where a jump-start
of −100 concerns a fully safe transfer.

0.6 0.8 1.0 1.2 1.4
Friction multiplier

50

100

150

200

250

300

350

400

C
os

t

Mass ×0.50
Mass ×0.93
Mass ×1.21
Mass ×1.50

Fig. 6: The expected cumulative costs in M⊙
2 for the average guide given each

mass-friction pair.

Appendix F shows tables collecting the worst-case, 0.1-tail, and average safety
jump-starts measured from every guide to the two kinds of students. An inter-
esting observation when comparing these with Tables 2, 3, and 4, is that policies
that appear robust in the source task may not necessarily have the ability to
effectively transfer their knowledge to a student in their target task. An ex-
treme example of such a phenomenon can be seen in Figure 5, where an agent
that is robust in the source task has an exceptionally poor safety jump-start in
worst-case environments.

6.4 Effect of the guide’s robustness on the student’s training

To determine how the transfer is affected by the robustness of the guide, the
student will be trained with a robust guide and a non-robust one. For the robust
guide, the agent trained with action noise in M2 where α = 0.29 is a good
candidate, and for the non-robust guide, we will use the agent trained with no
action noise, also within M2. We will transfer the guides to the dynamics that



14 M. Zubia et al.

0 100 200 300 400 500
Epoch

−30

−20

−10

0

10

20

R
et

ur
n

Robust
Non-robust
Train from scratch

0 100 200 300 400 500
Epoch

0

200

400

600

800

C
os

t

Robust
Non-robust
Train from scratch

Fig. 7: Comparison of the cumulative rewards and costs during training between
the students trained with the robust guide (α = 0.29) and the non-robust guide
(α = 0) in worst-case dynamics.

appear to be most challenging based on the Pareto chart shown in Figure 6:
m⊙ = 1.5m⋄ and η⊙ = 0.5η⋄.

The reward and cost during training of the students trained with robust
and non-robust guides are shown in Figure 7. Since the goal of the transfer
is to avoid safety violations within the target task, the transfer done with the
robust guide seems ideal. Even though the training takes place in a task with
unfavorable dynamics, the safety jump-start regarding the robust guide nears
-100%, meaning that the behavior policy is safe from the very start. Moreover,
the return jump-start of the student with the robust guide seems to be almost
maximal, while the student with a non-robust guide takes longer to converge to
a similar strategy.

7 Conclusions

We propose a method to transfer agents to environments with different or even
worst-case dynamics while satisfying safety constraints. The empirical evalua-
tion shows that, in general, agents trained with action disturbances have lower
worst-case expected cumulative costs without sacrificing the expected return.
In addition, we observe that guides that are robust in the source task do not
always have a favorable worst-case jump-start, which backs our theoretical in-
sights. Lastly, the agents with low worst-case safety jump-start demonstrate bet-
ter capability for transferring knowledge to the student in unfavorable dynamics,
compared to non-robust guides, where some robustified agents have been shown
capable of achieving a fully safe transfer.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.



Robustifying RL Agents for Safe Transfer through Action Disturbances 15

References

[1] David Abel, D. Ellis Hershkowitz, and Michael L. Littman. “Near Optimal
Behavior via Approximate State Abstraction”. In: ICML. Vol. 48. JMLR
Workshop and Conference Proceedings. JMLR.org, 2016, pp. 2915–2923.

[2] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer,
Scott Niekum, and Ufuk Topcu. “Safe Reinforcement Learning via Shield-
ing”. In: AAAI. AAAI Press, 2018, pp. 2669–2678.

[3] Eitan Altman, Said Boularouk, and Didier Josselin. “Constrained Markov
Decision Processes with Total Expected Cost Criteria”. In: VALUETOOLS.
ACM, 2019, pp. 191–192.

[4] Tamer Başar and Pierre Bernhard. H-infinity optimal control and related
minimax design problems: a dynamic game approach. Springer Science &
Business Media, 2008.

[5] Bahram Behzadian, Marek Petrik, and Chin Pang Ho. “Fast Algorithms
for L∞-Constrained S-Rectangular Robust MDPs”. In: NeurIPS. 2021,
pp. 25982–25992.

[6] David M Bossens. “Robust lagrangian and adversarial policy gradient for
robust constrained markov decision processes”. In: 2024 IEEE Conference
on Artificial Intelligence (CAI). IEEE. 2024, pp. 1227–1239.

[7] Steven Carr, Nils Jansen, Sebastian Junges, and Ufuk Topcu. “Safe Rein-
forcement Learning via Shielding under Partial Observability”. In: AAAI.
AAAI Press, 2023, pp. 14748–14756.

[8] Murat Cubuktepe, Nils Jansen, Sebastian Junges, Ahmadreza Marandi,
Marnix Suilen, and Ufuk Topcu. “Robust Finite-State Controllers for Un-
certain POMDPs”. In: AAAI. AAAI Press, 2021, pp. 11792–11800.

[9] Benjamin Eysenbach and Sergey Levine. “Maximum Entropy RL (Prov-
ably) Solves Some Robust RL Problems”. In: ICLR. OpenReview.net, 2022.

[10] Zeyu Feng, Bowen Zhang, Jianxin Bi, and Harold Soh. “Safety-Constrained
Policy Transfer with Successor Features”. In: ICRA. IEEE, 2023, pp. 7219–
7225.

[11] Javier García and Fernando Fernández. “A comprehensive survey on safe
reinforcement learning”. In: J. Mach. Learn. Res. 16 (2015), pp. 1437–1480.

[12] Michael Gimelfarb, André Barreto, Scott Sanner, and Chi-Guhn Lee. “Risk-
Aware Transfer in Reinforcement Learning using Successor Features”. In:
NeurIPS. 2021, pp. 17298–17310.

[13] Jakob J. Hollenstein, Sayantan Auddy, Matteo Saveriano, Erwan Renaudo,
and Justus H. Piater. “Action Noise in Off-Policy Deep Reinforcement
Learning: Impact on Exploration and Performance”. In: Trans. Mach. Learn.
Res. 2022 (2022).

[14] Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang
Sun, Yiran Geng, Yifan Zhong, Juntao Dai, and Yaodong Yang. Safety-
Gymnasium: A Unified Safe Reinforcement Learning Benchmark. 2023.
arXiv: 2310.12567 [cs.AI].

[15] Danial Kamran, Thiago D. Simão, Qisong Yang, Canmanie T. Ponnam-
balam, Johannes Fischer, Matthijs T. J. Spaan, and Martin Lauer. “A

https://arxiv.org/abs/2310.12567


16 M. Zubia et al.

Modern Perspective on Safe Automated Driving for Different Traffic Dy-
namics Using Constrained Reinforcement Learning”. In: ITSC. IEEE, 2022,
pp. 4017–4023.

[16] Thommen George Karimpanal, Santu Rana, Sunil Gupta, Truyen Tran,
and Svetha Venkatesh. “Learning Transferable Domain Priors for Safe Ex-
ploration in Reinforcement Learning”. In: IJCNN. IEEE, 2020, pp. 1–10.

[17] Adam Laud and Gerald DeJong. “The Influence of Reward on the Speed of
Reinforcement Learning: An Analysis of Shaping”. In: ICML. AAAI Press,
2003, pp. 440–447.

[18] Lihong Li, Thomas J. Walsh, and Michael L. Littman. “Towards a Unified
Theory of State Abstraction for MDPs”. In: AI&M. 2006.

[19] Zeyang Li, Chuxiong Hu, Shengbo Eben Li, Jia Cheng, and Yunan Wang.
“Robust Safe Reinforcement Learning under Adversarial Disturbances”. In:
CoRR abs/2310.07207 (2023).

[20] Zuxin Liu, Zijian Guo, Zhepeng Cen, Huan Zhang, Jie Tan, Bo Li, and
Ding Zhao. “On the Robustness of Safe Reinforcement Learning under
Observational Perturbations”. In: ICLR. OpenReview.net, 2023.

[21] Jinling Meng, Fei Zhu, Yangyang Ge, and Peiyao Zhao. “Integrating safety
constraints into adversarial training for robust deep reinforcement learn-
ing”. In: Inf. Sci. 619 (2023), pp. 310–323.

[22] Janosch Moos, Kay Hansel, Hany Abdulsamad, Svenja Stark, Debora Clever,
and Jan Peters. “Robust Reinforcement Learning: A Review of Founda-
tions and Recent Advances”. In: Mach. Learn. Knowl. Extr. 4.1 (2022),
pp. 276–315.

[23] Zhenghao Peng, Quanyi Li, Chunxiao Liu, and Bolei Zhou. “Safe Driving
via Expert Guided Policy Optimization”. In: CoRL. Vol. 164. Proceedings
of Machine Learning Research. PMLR, 2021, pp. 1554–1563.

[24] Julien Roy, Roger Girgis, Joshua Romoff, Pierre-Luc Bacon, and Christo-
pher J. Pal. “Direct Behavior Specification via Constrained Reinforcement
Learning”. In: ICML. Vol. 162. Proceedings of Machine Learning Research.
PMLR, 2022, pp. 18828–18843.

[25] Reazul Hasan Russel, Mouhacine Benosman, Jeroen van Baar, and Radu
Corcodel. “Lyapunov Robust Constrained-MDPs: Soft-Constrained Ro-
bustly Stable Policy Optimization under Model Uncertainty”. In: CoRR
abs/2108.02701 (2021).

[26] Thiago D. Simão, Nils Jansen, and Matthijs T. J. Spaan. “AlwaysSafe: Re-
inforcement Learning without Safety Constraint Violations during Train-
ing”. In: AAMAS. ACM, 2021, pp. 1226–1235.

[27] Marnix Suilen, Thiago D. Simão, David Parker, and Nils Jansen. “Robust
Anytime Learning of Markov Decision Processes”. In: NeurIPS. 2022.

[28] R.S. Sutton and A.G. Barto. Reinforcement Learning, second edition: An
Introduction. Adaptive Computation and Machine Learning series. MIT
Press, 2018. isbn: 9780262352703.



Robustifying RL Agents for Safe Transfer through Action Disturbances 17

[29] Matthew E. Taylor and Peter Stone. “Transfer Learning for Reinforce-
ment Learning Domains: A Survey”. In: J. Mach. Learn. Res. 10 (2009),
pp. 1633–1685.

[30] Chen Tessler, Yonathan Efroni, and Shie Mannor. “Action Robust Rein-
forcement Learning and Applications in Continuous Control”. In: ICML.
Vol. 97. Proceedings of Machine Learning Research. PMLR, 2019, pp. 6215–
6224.

[31] Akifumi Wachi, Xun Shen, and Yanan Sui. “A Survey of Constraint For-
mulations in Safe Reinforcement Learning”. In: Proceedings of the Thirty-
Third International Joint Conference on Artificial Intelligence, IJCAI-24.
Ed. by Kate Larson. Survey Track. International Joint Conferences on Arti-
ficial Intelligence Organization, Aug. 2024, pp. 8262–8271. doi: 10.24963/
ijcai.2024/913. url: https://doi.org/10.24963/ijcai.2024/913.

[32] Qisong Yang, Thiago D. Simão, Nils Jansen, Simon H. Tindemans, and
Matthijs T. J. Spaan. “Reinforcement Learning by Guided Safe Explo-
ration”. In: ECAI. Vol. 372. Frontiers in Artificial Intelligence and Appli-
cations. IOS Press, 2023, pp. 2858–2865.

[33] Simon Sinong Zhan, Yixuan Wang, Qingyuan Wu, Ruochen Jiao, Chao
Huang, and Qi Zhu. “State-wise Safe Reinforcement Learning With Pixel
Observations”. In: CoRR abs/2311.02227 (2023).

[34] Huan Zhang, Hongge Chen, Duane S. Boning, and Cho-Jui Hsieh. “Robust
Reinforcement Learning on State Observations with Learned Optimal Ad-
versary”. In: ICLR. OpenReview.net, 2021.

[35] Weiye Zhao, Tairan He, Rui Chen, Tianhao Wei, and Changliu Liu. “State-
wise Safe Reinforcement Learning: A Survey”. In: IJCAI. ijcai.org, 2023,
pp. 6814–6822.

[36] Zhuangdi Zhu, Kaixiang Lin, Anil K. Jain, and Jiayu Zhou. “Transfer
Learning in Deep Reinforcement Learning: A Survey”. In: IEEE Trans.
Pattern Anal. Mach. Intell. 45.11 (2023), pp. 13344–13362.

[37] Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K. Dey.
“Maximum Entropy Inverse Reinforcement Learning”. In: AAAI. AAAI
Press, 2008, pp. 1433–1438.

https://doi.org/10.24963/ijcai.2024/913
https://doi.org/10.24963/ijcai.2024/913
https://doi.org/10.24963/ijcai.2024/913


18 M. Zubia et al.

A Hyperparameters

The hyperparameters in our method are summarized in Table 1. All actor and
critic networks are modeled by a multilayer perceptron (MLP).

Parameter M1 M2 M3

Actor network size [256, 256] [256, 256] [256, 256]
Critic network size [256, 256] [256, 256] [256, 256]

Size of replay buffer 106 106 106

Batch size 256 256 256
Steps per epoch 2000 2000 2000

Number of epochs 106 106 106

Actor learning rate 5 · 10−6 5 · 10−6 5 · 10−6

Critic learning rate 10−3 10−3 10−3

Lambda learning rate 5 · 10−7 5 · 10−7 5 · 10−7

Safety constraint 5 8 25
Table 1: The hyperparameters used in the experiments.

B The Environments

The actor is a small robot called the point that can move forwards, backwards,
and steer left-to-right. The action space is [−1, 1]2, where the first value is for
the throttle and the second one is for steering. The observation space has the
following components:

– Pseudo-LIDAR for hazards in [0, 1]16.
– Pseudo-LIDAR for vases in [0, 1]16.
– Velocimeter in (−∞,∞)3.
– Accelerometer in (−∞,∞)3.
– Gyroscope in (−∞,∞)3.
– Magnetometer in (−∞,∞)3.

The pseudo-LIDAR casts 16 rays in different angles. It is termed “pseudo”
because, unlike with real LIDARs, the rays can go through objects. The other
sensors measure in three dimensions: a velocimeter for velocity (m/s), an ac-
celerometer for acceleration (m/s2), a gyroscope for angular velocity (rad/s),
and a magnetometer for magnetic flux (Wb).

Renders of the tasks are shown in Figures 8, 9, and 10.



Robustifying RL Agents for Safe Transfer through Action Disturbances 19

Fig. 8: Renders of tasks M⋄
1 (left) and M⊙

1 (right).

Fig. 9: Renders of tasks M⋄
2 (left) and M⊙

2 (right).

Fig. 10: Renders of tasks M⋄
3 (left) and M⊙

3 (right).



20 M. Zubia et al.

Y

Mass ×0.5 Mass ×1.0 Mass ×1.5

Y

X

Y

X X

Friction ×0.5

Friction ×1.0

Friction ×1.5

Fig. 11: The trajectories of π(_) = (1.0, 1.0) where the mass and friction are
multiplied by 0.5, 1.0, and 1.5. Both multipliers are 1.0 in the nominal dynamics.

C Cumulative Costs in the Uncertainty Sets

M⋄
1 M⋄

2 M⋄
3

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.

0.00 805.1 780.2 316.7 862.6 856.2 268.6 536.9 457.9 89.3
0.06 843.2 816.6 221.5 353.3 221.4 41.2 635.0 574.5 130.6
0.12 873.5 868.2 438.1 842.8 792.9 179.2 89.7 77.2 34.2
0.17 780.8 683.9 150.5 692.8 399.0 110.4 725.0 569.0 95.8
0.23 2.3 1.5 0.2 91.3 77.7 21.5 286.2 268.8 126.5
0.29 3.2 1.1 0.1 95.7 59.7 18.1 859.0 754.0 168.2
0.35 134.5 100.0 11.5 271.6 162.9 58.6 833.6 809.0 190.1

Table 2: The worst-case, 0.1-tail, and average expected costs of all the guides
trained with random action noise within the three source tasks.



Robustifying RL Agents for Safe Transfer through Action Disturbances 21

M⋄
1 M⋄

2 M⋄
3

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.

0.0 805.1 780.2 316.7 862.6 856.2 268.6 536.9 457.9 89.3
0.06 880.4 871.5 537.2 769.5 717.3 108.6 219.7 210.3 49.0
0.12 840.0 821.7 302.7 626.6 569.8 75.8 338.1 218.5 45.3
0.17 484.0 367.2 87.7 713.9 554.1 109.7 166.4 148.3 65.5
0.23 790.7 774.8 372.5 773.0 678.9 97.5 459.9 335.5 102.8
0.29 38.5 17.5 2.7 233.8 212.4 52.6 699.5 640.5 143.7
0.35 742.5 687.9 294.2 211.4 139.0 57.2 255.3 225.7 84.7

Table 3: The worst-case, 0.1-tail, and average expected costs of all the guides
trained with adversarial perturbations within the three source tasks.

M⋄
1 M⋄

2 M⋄
3

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.

0.0 147.4 82.9 9.7 668.7 563.6 108.2 892.7 881.7 262.4
10−3 594.2 139.0 13.2 551.1 423.1 59.3 877.6 871.0 186.4

Table 4: The worst-case, 0.1-tail, and average expected costs of all the guides
trained with entropy maximization within the three source tasks.

D Safety Jump-Start Tables

M⋄
1 M⋄

2 M⋄
3

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.
0.06 -60.4 -62.1 -86.6 -56.3 -63.0 -87.4 -48.9 -55.1 -82.9
0.12 -49.6 -54.3 -80.9 -31.4 -39.2 -84.1 -41.5 -53.6 -80.2
0.17 -64.3 -69.8 -87.9 -32.4 -51.2 -83.9 -36.6 -47.6 -80.8
0.23 -71.2 -80.3 -91.9 -34.8 -49.7 -85.2 -23.7 -39.1 -75.0
0.29 -62.8 -65.2 -86.5 -55.8 -59.5 -87.3 -15.6 -25.7 -76.4
0.35 -49.3 -61.8 -87.5 -5.8 -35.7 -79.6 -29.7 -38.6 -78.9

Table 5: Deterministic students with the random action noise guide.



22 M. Zubia et al.

M⋄
1 M⋄

2 M⋄
3

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.

0.06 179.7 134.9 -17.6 50.6 13.1 -63.0 18.8 2.7 -57.9
0.12 263.5 183.3 15.9 138.2 105.3 -47.3 64.5 40.4 -50.6
0.17 156.9 101.6 -20.3 123.1 53.2 -51.3 70.1 29.1 -53.1
0.23 46.7 18.7 -52.3 117.4 47.8 -56.1 68.5 48.0 -47.0
0.29 195.0 126.4 -18.8 86.2 26.8 -63.7 126.7 105.7 -41.1
0.35 205.1 103.8 -28.7 135.2 92.8 -41.1 116.2 63.2 -51.6

Table 6: Nondeterministic students with the random action noise guide.

M⋄
1 M⋄

2 M⋄
3

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.

0.06 -50.8 -57.0 -82.7 -44.9 -52.4 -84.1 -41.7 -49.0 -79.8
0.12 -56.6 -63.0 -87.2 -31.3 -39.9 -83.2 -39.7 -51.2 -81.3
0.17 -68.4 -72.1 -88.6 17.3 -28.9 -78.8 -41.8 -52.4 -80.8
0.23 -52.7 -64.4 -85.7 -19.9 -29.9 -80.5 -49.7 -58.6 -83.2
0.29 -62.0 -69.4 -87.8 -31.8 -49.4 -83.5 -52.3 -59.1 -82.9
0.35 -65.0 -67.6 -80.5 -61.0 -68.2 -88.4 -48.8 -52.4 -79.9

Table 7: Deterministic students with the adversarially trained guide.

M⋄
1 M⋄

2 M⋄
3

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.

0.06 177.7 143.1 0.2 151.5 86.9 -50.1 61.7 30.8 -52.5
0.12 106.3 88.9 -30.8 142.1 102.6 -46.3 43.0 25.6 -54.8
0.17 73.6 53.4 -36.2 161.0 122.9 -36.3 21.2 13.4 -54.3
0.23 197.2 125.7 -14.2 135.2 99.9 -44.9 40.9 21.3 -55.6
0.29 188.7 101.0 -23.7 86.6 36.1 -55.4 24.1 1.3 -59.4
0.35 172.2 112.2 10.1 56.3 26.5 -63.5 74.1 39.4 -50.2

Table 8: Nondeterministic students with the adversarially trained guide.

M⋄
1 M⋄

2 M⋄
3

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.

0.0 -69.3 -75.5 -90.8 -34.3 -58.5 -86.2 12.3 -5.0 -71.8
0.001 -44.0 -66.2 -89.4 -30.1 -54.9 -84.8 -0.7 -20.5 -73.6

Table 9: Deterministic students with the entropy maximizing guide.



Robustifying RL Agents for Safe Transfer through Action Disturbances 23

M⋄
1 M⋄

2 M⋄
3

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.
0.0 44.9 29.1 -46.3 80.3 45.3 -57.2 132.1 91.5 -40.1

0.001 165.2 77.6 -37.4 101.6 73.8 -51.4 137.8 108.3 -36.0
Table 10: Nondeterministic students with the entropy maximizing guide.



24 M. Zubia et al.

E Robustness Heatmaps from the Source Task



Robustifying RL Agents for Safe Transfer through Action Disturbances 25

Fig. 12: Average expected costs of all the guides trained with random action noise
within the three source tasks, where each dot represents a different dynamics
function.



26 M. Zubia et al.



Robustifying RL Agents for Safe Transfer through Action Disturbances 27

Fig. 13: Average expected costs of all the guides trained with adversarial per-
turbations within the three source tasks, where each dot represents a different
dynamics function.



28 M. Zubia et al.

Fig. 14: Average expected costs of all the guides trained with entropy maximiza-
tion within the three source tasks, where each dot represents a different dynamics
function.

F Safety Jump-Start Heatmaps

F.1 Transferring to the nondeterministic student



Robustifying RL Agents for Safe Transfer through Action Disturbances 29



30 M. Zubia et al.

Fig. 15: Safety jump-starts of the nondeterministic students with the guides
trained with random action noise within the three target tasks, where each
dot represents a different dynamics function.



Robustifying RL Agents for Safe Transfer through Action Disturbances 31



32 M. Zubia et al.

Fig. 16: Safety jump-starts of the nondeterministic students with the guides
trained with adversarial perturbations within the three target tasks, where each
dot represents a different dynamics function.

Fig. 17: Safety jump-starts of the nondeterministic students with the guides
trained with entropy maximization within the three target tasks, where each
dot represents a different dynamics function.



Robustifying RL Agents for Safe Transfer through Action Disturbances 33

F.2 Transferring to the deterministic student



34 M. Zubia et al.

Fig. 18: Safety jump-starts of the deterministic students with the guides trained
with random action noise within the three target tasks, where each dot repre-
sents a different dynamics function.



Robustifying RL Agents for Safe Transfer through Action Disturbances 35



36 M. Zubia et al.

Fig. 19: Safety jump-starts of the deterministic students with the guides trained
with adversarial perturbations within the three target tasks, where each dot
represents a different dynamics function.

Fig. 20: Safety jump-starts of the deterministic students with the guides trained
with entropy maximization within the three target tasks, where each dot repre-
sents a different dynamics function.


	Robustifying RL Agents for Safe Transfer through Action Disturbances

