
Reducing required randomness for parallel Gibbs
sampling

Gellert Toth1[0009−0002−9340−4807], Johan Kwisthout1[0000−0003−4383−7786]

Radboud University, 6525 XZ Nijmegen, Netherlands

Abstract. Current state of the art Gibbs samplers parallelize sampling
through several means, one being graphs colorings. However, parallelism
is not the only relevant factor in the performance of a Gibbs sampler.
Random number generation can be quite costly in terms of energy and
hardware usage. Thus the number of random values needed, for carry-
ing out the Gibbs update step, should also be optimized. This paper
proposes a technique for reusing random numbers, which allows Gibbs
samplers to reduce the required randomness without sacrificing any par-
allelism. We also introduce a novel coloring algorithm that is capable
of producing multiple colorings along the curve of the trade-off between
parallelism and required randomness. Between these colorings, a selec-
tion can be made given the parameters of the environment to further
optimize performance.

Keywords: Parallel Gibbs sampling · Graph coloring · Chromatic Sam-
pler · RNG

1 Introduction

Probabilistic graphical models (PGMs) represent a set of probabilistic vari-
ables and the conditional dependencies between them in the form of a directed
(Bayesian Network) or undirected (Markov Random Fields) graph. The aim of
these networks is to compute the probability distribution of the variables given
that we know the state of some variables in the network.

In order to make use of PGMs, an efficient method for calculating the poste-
rior distribution of the variables is needed. However, it has been shown [1] that
exact inference is intractable (i.e., NP-hard), thus approximation methods are
needed.

1.1 Gibbs sampler

The goal of the Gibbs sampler is to approximate the posterior probability dis-
tributions of the variables in the network. This is done by repeatedly drawing
samples of the distribution at random under the assumption that given enough
repetitions the distribution of the drawn samples will estimate the real distribu-
tion [4].



2 G. Toth et al.

The original Gibbs sampler constructs a Markov chain of samples, where each
element of the chain depends only on the previous element [4]. The distribution
of values in the chain will converge to the real distribution. For a variable in
the PGM a new value can be added to the chain by sampling the variable. This
sample will depend on the last value of the neighbours of the variable in the
network.

In particular this means that the Gibbs sampler executes this update step
using the values from the previous step for every variable one-by-one. This is
repeated for some predefined amount of iterations or until a certain exit criterion
is met.

1.2 The Chromatic sampler

Sampling to a satisfactory approximation of the true distribution can require
many samples and take a long time. In order to speed up sampling, the Gibbs
update can be parallelized using a graph coloring. This method was proposed
as the Chromatic sampler by Gonzalez et al. (2011) [5]. Their paper focuses on
Markov Random Fields (MRFs), which are described by an undirected graph,
but is applicable to Bayesian Networks as well. Their algorithm relies on the fact
that two nodes can be sampled in parallel, when there is no edge between them
in the MRF. A graph coloring provides exactly this: an assigned color to every
node, where no two nodes of the same color are directly adjacent. Meaning, that
given a coloring nodes of the same color can be sampled in parallel. Thus an
iteration of the update step on a computer with p processors can be done in
O(np + k), for a MRF with n variables, given a k-coloring. A formal proof of this
can be found under Proposition 3.1 of [5].

1.3 Independent random numbers

Although, the chromatic sampler achieves a significant improvement from the
linear Gibbs sampler, there are further advancements to be made. Both algo-
rithms use a distinct random number for each of the variables in the update step.
However, we can reuse these random numbers to save on the costs of random
number generation [7]. As even with recent improvements [2], random number
generators (RNGs) remain quite costly in terms of resource usage, by reusing the
random numbers we could save on hardware and energy usage. This is a crite-
rion that was not taken into account by the Chromatic sampler. This paper will
focus on creating sampling algorithms that take both the amount of parallelism
achievable and the required number of random values into account.

More precisely, the sampler can use the same random number when two nodes
of the MRF have at least two intermediate nodes on the shortest path between
them. In such case the two nodes depend on completely different variables in
the network. On the contrary, if the shortest path only contains one node, thus
the sampled nodes share a common neighbour, an independent random number
is needed. In practice this means that we need at least one independent random



Reducing required randomness for parallel Gibbs sampling 3

value per color and possibly more if nodes within that color share neighbours.
This means that the number of random values needed is at least the chromatic
number, but in practice this is a very weak lower bound. This proposes a trade
off between the amount of parallelism achievable and the amount of independent
random values needed. Since there possibly could be a coloring which uses more
colors but uses less independent random numbers. An example of the trade off
is presented in Figure 1.

Fig. 1. The coloring on the left uses only 3 colors, but needs 6 independent random
numbers (since E-G, F-D, A-C and B-D share a common neighbour). Whereas, the
coloring on the right uses 4 different colors, but needs only 5 independent random
numbers, as only the A-D pair requires additional independence.

Mapping out the curve of the trade off The goal is to map out the curve
of this trade off and choose the point along the curve that fits our needs the
best, based on the parameters of the environment. However, mapping out the
exact curve is NP-hard, which we can easily show by noting that finding the
chromatic number of a given graph is a by-product of mapping the curve out.
Since at one of the extremes on the curve, one would have a coloring with the
lowest theoretical amount of colors (which is the chromatic number). Meaning
that if we find the curve, we also found the chromatic number, thus since finding
the chromatic number is NP-hard [6] so is finding the curve of this trade off. Thus
feasible solutions for mapping out the curve would only include approximation
algorithms.

Ideal coloring algorithm The run time of the Chromatic sampler depends
on the number of colors used in the coloring. Additionally the number of inde-
pendent random numbers needed has to be considered as this affects hardware
usage and energy costs. Without knowing what environment the sampling algo-
rithm is running on it is impossible to say what is an ideal coloring. Since it is
influenced by a lot of factors such as: number of processors, number of different
RNGs available or the actual cost of getting a random number. Thus, an ideal
coloring algorithm provides more than one coloring along the curve of the trade
off. This way a selection can be made given the exact parameters of the environ-



4 G. Toth et al.

ment out of the proposed options. Therefore, it makes sense to focus on coloring
algorithms that produce more than one candidate.

1.4 Research Question

In this paper we propose an improved version of the Chromatic Gibbs sampler,
which is equipped with our heuristic coloring algorithm chosen from a handful of
candidates. We will discuss what improvements this method achieves compared
to the original Chromatic sampler, in terms of number of random values needed
compared to the possible parallelism.

1.5 Looking ahead

In the following Background section more technical details on the before men-
tioned notions and further motivation for the need for the proposed improvement
will be provided. The Methods section will introduce our coloring algorithm and
the means of comparison. Finally, the Results and Discussion sections will show
how the algorithm performed.

2 Background

This chapter will dive deeper into when and how random numbers can be reused
and will propose our changes to the chromatic sampler. Then we will shortly
explain Recursive Largest First (RLF), a well known heuristic coloring
algorithm that our most successful algorithm is based on.

2.1 Improving the chromatic sampler by reusing random values

Input: k-Colored MRF
/* Iterate over all colors: ki is the set of nodes in color i */
for ki : i ∈ {1, ..., k} do

forall Xj ∈ ki do in parallel
/* Sample new value for node j depending on last value of

neighboring nodes */
X

(t+1)
j ∼ π(Xj |X(t+1)

Nj
∈ k<i, X

(t)
Nj

∈ k>i) using random value sampled
on demand

end
end

Algorithm 1: Chromatic sampler [5]

Detailed explanation of the Chromatic Sampler Algorithm 1 shows the
pseudo-code of the Chromatic sampler introduced by [5]. When sampling the



Reducing required randomness for parallel Gibbs sampling 5

node j for time (t + 1) we make use of the values of its neighbours (Nj): for
those that belong in an earlier color we take their (t+1)th sample, for those that
belong in later colors we take their tth sample.

As [5] argues the nodes in ki (ki is the set of nodes in in the ith color) can be
sampled in parallel as they are conditionally independent given the rest of the
graph.

Reusing random numbers In the Gibbs sampling algorithm the value of a
node is sampled according to the values of its neighbours. This is possible due to
the definition of Markov Random Fields and Markov Blankets: the distribution
of a variable is independent given its immediate neighbours from the rest of the
graph. Formally:

π(Xi|XNi
) = π(Xi|X{1,...i−1,i+1,...n})

Thus nodes, whose Markov Blankets do not overlap can be sampled using
the same random number, since their update depends on completely different
nodes within the MRF. An example of this can be seen on Figure 2.

Fig. 2. In the graph above node 9 will be sampled based on the value of node 6, while
node 2 will be sampled using node 1 and 3. Since there is no overlap between the nodes
they depend on (their Markov blankets), node 2 and 9 can use the same random value
for the update step. Similarly within the green color the (4,9) pair and (4, 8) pair could
also use the same value.

We propose an algorithm that samples nodes of the same color in parallel
and reuses random numbers needed between nodes within a color as much as
possible. Nodes of different colors will always use independent random numbers
(the alternative to this will be discussed later on). [5] showed that sampling can
be parallelized given a graph coloring and we have showed that two nodes can
reuse a random number if their Markov blankets do not overlap. However, we
have not provided a proof that these two assumptions can be combined. We have
not managed to obtain a formal proof, but a statistical test was conducted to



6 G. Toth et al.

reinforce our intuition that this is indeed possible. This test will be explain in
more detail later on.

So far we have only argued about when a pair of nodes could use the same
random number, but this does not provide a full picture. In the example on
Figure 2 the (2,9) pair could have the same random value and the (4,9) pair as
well. However, this would mean that 4 and 2 also share the same value, which
is not allowed. Thus we have to allocate these random values optimally, without
breaching any of the restrictions. This will again be solved by obtaining a coloring
on the graph constructed in the following manner (we will refer to this graph as
independence graph):

– Take the set of nodes belonging to this color
– Add an edge between all pairs of nodes that are a distance of 2 apart (which

is the case when they share a neighbour, thus their Markov blankets overlap)

Such a graph constructed on the green color from Figure 2 can be seen on
Figure 3. Obtaining an optimal coloring for this graph gives the allocation for
which nodes will use the same random values. Since coloring is an NP-hard
problem one would use one of the many heuristics (two of which we will discuss
in this section later) to obtain a (sub)optimal coloring.

Fig. 3. The constructed independence graph for the green color on 2. The optimal
coloring for this graph uses 2 colors, thus we will need 2 independent random values

There is also a known upper bound for the chromatic number of a graph:
∆ + 1, where ∆ is the maximum degree in a graph. This can be easily proven
the following way:

– choose a node without an assigned color, select the first color which none of
its already colored neighbours have, repeat until all nodes are colored

– the upper limit for the color assigned is equal to the upper limit of the MEX
(maximum excluded element) of a set with at most ∆ elements (since ∆ is
the maximum degree), which is ∆+ 1

– thus a coloring with at most ∆+ 1 colors is always obtainable



Reducing required randomness for parallel Gibbs sampling 7

Using separate colorings for deciding parallelism and the allocation
of random values So far we forced nodes that have different colors to use
independent random numbers by default, as we only defined reusal within a color.
However, this is not a necessity: two nodes need separate random numbers if
their Markov blankets overlap. This means that one could create coloring on the
original MRF to decide how to parallelize the sampling and a completely separate
coloring on the independence graph which decides the allocation of the random
values. In other words there is no need for us to find colorings that optimize on
both aspects as the same time as we can optimize them independently. However,
this approach presents with a different drawback: the random values would have
to be readily available for us prior to the parallel Gibbs update which means pre-
computation (or through extremely complicated scheduling). Even with recent
advancements in random number generators achieved by [2], RNGs remain costly
in the sense of hardware usage and energy consumption. Thus pre-computing
these random values could not be parallelized to the same extent as the Gibbs
update step, meaning that any advancements we make would be irrelevant.

In contrast with this, when there are no shared random values across colors
the need for pre-computation is gone. Since one could sample the random values
only when the variables belonging to that color are sampled. In this scenario,
there are also less values needed in parallel, which could make it more manageable
to compute using multiple RNGs in parallel.

It has to be noted that under certain circumstances (such as actual cost of
an RNG, number of processors, number of colors etc. etc.) either approach could
be more beneficial. We will not go into further details, as it is outside of the
scope of our research. However, from here on we will only focus on the initially
presented approach and assume that it performs better than the alternative.

2.2 Improved Chromatic Sampler

Algorithm 2 shows the pseudo code of the improved chromatic sampler. The
only alteration made to the original Chromatic sampler (Algorithm 1) is that
along with a coloring of the MRF Algorithm 2 is given a secondary coloring for
each color’s independence graph. During the parallel update, the random value
corresponding to the color of the node in the independence graph can be used to
execute the Gibbs update. These random values are sampled on demand either
linearly if we only have access to one RNG or in parallel if we are given multiple
RNGs.

To improve our confidence in the fact that this algorithm maintains ergodic-
ity we ran the linear Gibbs sampler, the Chromatic sampler and our Improved
Chromatic sampler and verified that they all converge to the same distribution.
For the sake of simplicity we created a small MRF where all conditional distribu-
tions were Bernoulli distributions with randomly selected probabilities. We then
ran the algorithms to obtain the individual distributions of each of the variables
and asserted that values between the algorithms do not diverge significantly.
This test can be found on this git repository along with all other codes produced
during this project:



8 G. Toth et al.

https://gitlab.socsci.ru.nl/gellert.toth/thesis-gellert-toth

Input: k-Colored MRF with a secondary coloring over the independence
graph of each color

for ki : i ∈ {1, ..., k} do
forall Xj ∈ ki do in parallel

/* Execute Gibbs Update: */
X

(t+1)
j ∼ π(Xj |X(t+1)

Nj
∈ k<i, X

(t)
Nj

∈ k>i) using the random value
obtained on demand for this color in the independence graph of color i

end
end

Algorithm 2: Improved Chromatic sampler

2.3 Recursive Largest First

The coloring algorithm that we will introduce in section 3 of this paper took in-
spiration of a well-known coloring heuristic: Recursive Largest First (RLF)
originally proposed by [3]. In order to understand our algorithm it is important
to be familiar with RLF. The original algorithm is as follows:

1. find a maximal independent set, assign it the first unused color
2. remove the elements of the set from the graph
3. repeat from step 1, until the graph is empty and all nodes have a color

assigned

To find a maximal independent set in step 1, the following technique was
proposed by [3]:

1. let S be an empty set
2. add the node with the largest degree
3. repeatedly add the node with the most adjacent nodes that are adjacent to

any node already in S but itself is not adjacent to any node in S. In case of
a tie select the node with the minimum number of adjacent nodes not in S

We will refer to this method as RLF-Basic.
The original form of RLF-Basic intuitively goes against our goal of mini-

mizing the required random numbers. When creating the maximal independent
set S the node with the most 2 away neighbours already in S is added to the
set. Meaning that we are maximizing the number of edges in the independence
graph of this color and graphs with higher density tend to have higher chromatic
numbers. However, by altering only the method of finding a maximal indepen-
dent set, different versions of this algorithm could be created that behave more
in line with our expectations.

https://gitlab.socsci.ru.nl/gellert.toth/thesis-gellert-toth


Reducing required randomness for parallel Gibbs sampling 9

3 Methods

In this chapter we will first discuss how we calculate the attributes of interest
then introduce our best novel heuristic algorithm and our novel method for post
processing a coloring.

3.1 Coloring evaluation

Score coloring To score a coloring we have to determine the two relevant
attributes:

– chrom: the number of colors used in the coloring
– random_count: an upper bound on the number of random values needed

for sampling

Extracting chrom is very straightforward: simply take the size of the set of
colors. On the other hand random_count is a bit more tricky, as normally it
would require us to find the chromatic number of all the independence graphs for
every color, which can only be done in exponential time due to coloring being an
NP-hard problem. Alternatively, in practice one would run a heuristic coloring
which will give a (sub) optimal solution under an acceptable run time. However,
we decided to use the previously mentioned ∆ + 1 upper bound for the sake of
simplicity.

3.2 RLF-Remove-Worst

RLF-Basic is one of the best (inexpensive) coloring heuristics, but intuitively
it is less good in optimizing random_count. However, by first removing the
nodes that have the largest potential contribution to random_count, then run-
ning RLF-Basic, the final random_count could be greatly reduced. For this we
propose the following algorithm:

1. create an empty set S
2. select the node that does not neighbour any nodes already in S in the graph

with the most secondary neighbours (nodes that are reachable in two steps)
3. repeat step 2 until no node can be added
4. calculate a possible coloring for the parts of the graph that have no color yet

using RLF-Basic and save this candidate, then repeat from step 1

This method will be referred to as RLF-Remove-Worst from here on. By
incrementally creating more and more independent sets using our method then
finishing the rest with the original, we can effectively find points along the trade
off curve.



10 G. Toth et al.

3.3 Post process coloring

As all potential coloring algorithms are heuristic there is generally room for
improvement. For this purpose we created a post-processing method that all
heuristics can rely upon to improve the coloring and achieve further easy gains.
This is done as follows:

1. try all pair of colors and try to find a possible better allocation in regards
to random_count. More details on this later.

2. reassign the colors of the pair that offers the most improvement on ran-
dom_count

3. repeat step 1 until no improvements possible

To find improvements on the allocation of nodes between two colors one can
either iterate through all possible allocations or randomly sample allocations to
try out. The former only works when the set of nodes between the two colors
is small, thus in practice this method would randomly sample a set amount of
allocations. In our implementation this was set to 128. We will refer to this
method of reallocating a pair of colors as two-color.

Optimally, one would precalculate a table containing the gain for every pair
and after a reassignment of a pair only recalculate the relevant parts of the table.
If implemented this way one iteration of this algorithm will call two-color O(k)
times and requires O(k2) calls to two-color in the precalculation step.

We will show in the later sections that this method has lead to drastic im-
provements on several of our heuristics. We will refer to this method as post-
process.

3.4 Evaluation

bnlearn - bnrepository The Bayesian networks uploaded to bnrepository were
used for bench-marking, as these networks are extensively used in research and
provide a wide range of networks with sizes ranging from only a couple nodes to
several hundred.

One first has to convert these Bayesian networks into Markov Random Fields
through a method called moralization. This is done by adding an edge between
all pairs of nodes that share a child in the graph of the network. Then we remove
the directions of the edges. Since, we only care about the structure of the graph
we do not have to worry about adjusting the conditional probability distributions
which normally would be a part of moralization.

Comparison through Pareto curves The set of colorings produced by an
algorithm can be reduced to an array of pairs of the two relevant attributes:
[(chrom, random_count)]. From this the Pareto curve can to be constructed.
The curve expresses the theoretical lower bound that this algorithm finds for a
given graph. This curve can be found by simply sorting all pairs and filter out
points for which there exists another point that is strictly better. A coloring is

https://www.bnlearn.com/bnrepository/


Reducing required randomness for parallel Gibbs sampling 11

clearly better than another one, if it has a smaller random_count and an an
equal or smaller chrom. Meaning that it uses less random numbers, while using
the same or less colors. Approaching this from the other direction, a coloring A
will be part of the curve, if the the coloring with the highest chrom that is still
smaller than the chrom of A, does not use less random numbers than A.

Formally, a pair (chromi, random_countj) will be part of the curve if and
only if

∄j : chromj ≤ chromi ∧ random_countj < random_counti

By allowing equality, the curve could have horizontal sections (when placing
chrom on the x-axis), which represent that in this section of the chrom range
there are no gains to be made in respect to random_count

By constructing an overall Pareto curve across all our algorithms, that we
came up with in the process of writing this paper we can obtain an approximation
of the actual curve, which is otherwise intractable to compute.

Given the overall curve and the curve for a specific algorithm, we can iterate
through all the different values of chrom and calculate how much does the curve
deviate from the overall curve (by diving their y values at that point). Averaging
these values gives us the average proportional deviation from the theoretical
limit.

This average deviation was used to compare our algorithms and enabled us
to pick the best one to present in this paper.



12 G. Toth et al.

4 Results

Fig. 4. The trade off curve produced by RLF-Remove-Worst on some of the bench-
mark networks. With the chrom range on the x-axis and the proportional need for
randomness on the y-axis compared to the chromatic sampler. In green before post
processing and in blue after post processing.

Table 1. The proportional difference to the overall curve across all Bayesian Networks
that we run our algorithm on. The first two rows show the results before and after
post-processing. The third row shows the gain achieved by post processing. The final
column shows the average for all three rows.

5 Discussion

This chapter will first discuss the gains compared to the chromatic sampler.
Then we will shortly touch on the relevance of the post-processing method in



Reducing required randomness for parallel Gibbs sampling 13

the pipeline. Then to conclude this paper we will discuss the limitations of our
research along with what future research should focus on.

5.1 Gains from the improved chromatic sampler

Figure 4 shows the trade off curve for a few Bayesian networks. On the left
extreme of the curves we have the scenario where we do not sacrifice parallelism
compared to the chromatic sampler. In this case we can observe pure gains in
our need for randomness as the improved version occasionally uses drastically
less numbers. The difference is most prevalent in the case of munin1, where with
our method we need only 22% of the randomness the chromatic sampler would
use.

The other important aspect of our method is that we not only use less ran-
domness out of the box, but we can also continue to trade off some of the
parallelism. Our goal was to present that this trade off is generally there. It was
not part of the scope of our research to figure out the nature of the trade off or
the extent of it. We believe that Figure 4 displays that the possibility is there
and gains could be significant.

5.2 Analysis of post-processing

Along with our main line of research for mapping the curve of the trade off and
experimenting with novel heuristic algorithms, we also introduced a novel post-
processing method that can improve any given coloring and further reduce the
required randomness.

It is important to note that, the better a coloring algorithm performs the
less post-processing can improve on it, as there is a hard limit. However, even on
our best performing algorithm post-processing achieved an over 6% gain across
all networks. This could potentially be further improved by using more sample
allocations in our algorithm. This would lead to increased runtime, but luckily
the algorithm can be very easily and effectively parallelized. By implementing
a parallel version of our post-processing the number of samples tried could be
greatly increased.

5.3 Limitations

Our research had certain limitations that prevented us from making more specific
claims about our results. The most limiting factor is that we did not calculate
the actual trade off curve, rather we used the merge off all algorithms as an
approximation. This means, that only comparison between algorithms or com-
parison between before and after post-processing can be made. We cannot make
any claims about the actual performance of RLF-Remove-Worst.

Simultaneously, we did not run our algorithms on a subset of all networks,
rather we used a very specific selection of networks. This means, that our num-
bers are indicative and cannot be generalized to the population of all networks.
However, we believe that the networks chosen are fairly representative and they
are generally used in research.



14 G. Toth et al.

5.4 Conclusions and future work

We have proposed a new version of the chromatic sampler [5], which not only
takes into account the amount of parallelism achievable, but also the amount of
random values needed for sampling. In order to use the least amount of random
values while also achieving the most parallelism, we proposed a heuristic coloring
algorithm that can be used to decide both which nodes are sampled in parallel
and which nodes use the same random values.

Equipped with RLF-Remove-Worst the improved chromatic sampler al-
ready uses less (for some graphs drastically less) random values while achieving
the same parallelism as the chromatic sampler. However, our algorithm also
allows the possibility to trade off some of the parallelism in order to use less ran-
dom values. We believe that the experimental research concluded here, shows
that there are significant gains to be made with the outlined methods.

Future research should focus on with dealing with the limitations of our
paper to be able to make general claims on performance. Alternatively, a method
for selecting the point along the trade off curve is also needed for an actual
implementation of our ideas.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References
1. Cooper, G.F.: The computational complexity of probabilistic infer-

ence using bayesian belief networks. Artificial Intelligence 42(2), 393–
405 (1990). https://doi.org/https://doi.org/10.1016/0004-3702(90)90060-D,
https://www.sciencedirect.com/science/article/pii/000437029090060D

2. İsmail Emir Yüksel, Olgun, A., Salami, B., Bostancı, F.N., Tuğrul, Y.C., Yağlıkçı,
A.G., Ghiasi, N.M., Mutlu, O., Ergin, O.: Turan: True random number generation
using supply voltage underscaling in srams (2022)

3. Frank, T.L.: A Graph Coloring Alogrithm for Large Scheduling Problems. Journal
of research of the National Bureau of Standards 84, 489–506 (1979). https://doi.
org/10.1007/978-3-030-81054-2

4. Geman, D., Horowitz, J., Rosen, J.: A local time analysis of intersections of Brow-
nian paths in the plane. The Annals of Probability pp. 86–107 (1984)

5. Gonzalez, J., Low, Y., Gretton, A., Guestrin, C.: Parallel Gibbs Sampling: From
colored fields to thin junction trees. In: Gordon, G., Dunson, D., Dudík, M. (eds.)
Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics. Proceedings of Machine Learning Research, vol. 15, pp. 324–332. PMLR,
Fort Lauderdale, FL, USA (11–13 Apr 2011), https://proceedings.mlr.press/v15/
gonzalez11a.html

6. Karp, R.M.: Reducibility among Combinatorial Problems, pp. 85–103. Springer
US, Boston, MA (1972). https://doi.org/10.1007/978-1-4684-2001-2_9, https://
doi.org/10.1007/978-1-4684-2001-2_9

7. Kwisthout, J.: Approximate inference in Bayesian Networks: Parameterized com-
plexity results. International Journal of Approximate Reasoning 93, 119–131
(2018). https://doi.org/https://doi.org/10.1016/j.ijar.2017.10.029, https://www.
sciencedirect.com/science/article/pii/S0888613X17306680

https://doi.org/https://doi.org/10.1016/0004-3702(90)90060-D
https://doi.org/https://doi.org/10.1016/0004-3702(90)90060-D
https://www.sciencedirect.com/science/article/pii/000437029090060D
https://doi.org/10.1007/978-3-030-81054-2
https://doi.org/10.1007/978-3-030-81054-2
https://doi.org/10.1007/978-3-030-81054-2
https://doi.org/10.1007/978-3-030-81054-2
https://proceedings.mlr.press/v15/gonzalez11a.html
https://proceedings.mlr.press/v15/gonzalez11a.html
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/https://doi.org/10.1016/j.ijar.2017.10.029
https://doi.org/https://doi.org/10.1016/j.ijar.2017.10.029
https://www.sciencedirect.com/science/article/pii/S0888613X17306680
https://www.sciencedirect.com/science/article/pii/S0888613X17306680

	Reducing required randomness for parallel Gibbs sampling

