
Real-time Optimization of Industrial Processes using Deep
Reinforcement Learning

Nitin Singh1, Jasper Stolte2, Stanislav Jaso2, Bei Li2, Reinier van de Pol2, and
Christian Michler2

1Shell India Markets Private Limited, Bangalore, India
2Shell Global Solutions International B.V., Amsterdam, The Netherlands

Abstract

Reinforcement learning (RL) has shown immense potential in various applications; however, its application in complex in-
dustrial processes is yet to be widely explored. This work aims to explore the potential of RL in process engineering and
control through a proof of concept study to demonstrate the application of RL for real-time optimization (RTO) in a catalytic
reactor system. The objective is to maximize the production of a high-value hydrocarbon while ensuring process constraints. A
suitable actor-critic RL architecture is used, and the results are compared with a mathematical optimization solver-based bench-
mark. The study also evaluates the capabilities of Microsoft Project Bonsai, an AI platform for designing autonomous systems.
Major contributions of this work include demonstrating the application of RL for RTO problems in chemical processes, discov-
ering the adaptiveness and fast inference time of RL, and presenting a method for handling constraints during policy network
training. The results show that RL can find feasible solutions comparable to the optimization-based benchmark.

1 Introduction

The field of Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) has made significant advances in recent
years, yielding impressive results in diverse areas such as robotics, AI game playing agents, automated stock trading, self-
driving cars etc. (Silver et al., 2016), (Silver et al., 2017), (Mnih et al., 2013), (Mnih et al., 2017), (Xiong et al., 2017). The
outcomes have generated a growing interest in applying RL to further real-world engineering and physical systems where a
dynamic control is required like Industrial Process Control. While a considerable amount of past research in this field has
concentrated on RL to determine discrete-time optimal control policies for nonlinear processes (Spielberg et al., 2019), (Ernst
et al., 2008), (Nian et al., 2020), there have been relatively few studies that have investigated RL’s potential for real-time
optimization (RTO) applications. In RTO, the primary function is to maximize system performance or a key metric, rather than
maintaining set points (Powell et al., 2020). Through a proof of concept study, this work explores the application of RL for
RTO in a catalytic reactor system.

The broader purpose for this project is to explore the application of RL in the process engineering and control domain,
draw key conclusions and learnings, and assess its potential for delivering future value. Despite several promising results in
other areas, RL is yet to be widely applied in complex industrial processes, primarily due to two main challenges: (i) Dealing
with high-dimensional action and state spaces - a typical scenario in industrial processes - poses a complex challenge, and (ii)
difficulty in satisfying state constraints1 (Pan et al., 2021), (Nian et al., 2020), (Dalal et al., 2018).

Given these challenges, the set-point finding problem presents itself as a more suitable starting point for exploring the
potential of RL as it can be considered a simpler representative version of the full dynamic set-point tracking problem. Ad-
ditionally, for comparison purposes, we had access to a classical mathematical optimization based benchmark. It is, however,
acknowledged that the set-point tracking problem is more suitable from both a methodological and application standpoint.
While the application of RL for steady-state RTO is not ideally suited considering the fundamental principles of RL in Markov
Decision Processes (MDP’s) and system dynamics (Kaelbling et al., 1996), there is still an unexplored potential for gaining
more insights for its use in RTO applications. Notwithstanding, we attempt to introduce (pseudo) system dynamics through
the utilization of a method called here as delta actions (further explained in Section 4.2.1).

In this study, we present an RL-based approach to maximize the production of a certain high-value hydrocarbon in a
steady-state catalytic reactor system while satisfying process constraints and ensuring that input and output process variables
remain within their prescribed bounds. In other words, we solve a complex, constrained non-linear optimization problem. We

1 State constraints come into effect when it is desirable to avoid certain states. From a process engineering standpoint, state constraints
can imply safety, technical or operational constraints. For instance, when operating a certain chemical reactor, it is important to ensure that
the inlet and outlet pressures of the reactor stay within the prescribed safe operational range. State constraint is critical for Model Predictive
Control (MPC) like controllers. However, RL in its original form is not naturally designed to handle such constraints as the goal of the agent
is to score maximum reward and win. Certain constraint handling modifications are required to achieve this.

1

, 2

Fig. 1: Diagrammatic representation of a single reactor. The full unit is a two-staged system consisting of identical 𝑟1 reactors
in the first stage and 𝑟2 reactors in the second stage. The reactors produce HVHC, a high value hydrocarbon which is
also the key product of interest. HVHC production is determined by several factors such as catalyst activity factors,
fresh feed flow values, reactor inlet pressures and reactor temperatures

use a suitable actor-critic RL architecture and compare our results with mathematical optimization solver based benchmark
developed in MATLAB. Furthermore, we briefly evaluate the capabilities and features of Microsoft Project Bonsai (Microsoft
Bonsai, 2020), an AI platform for designing autonomous systems, by implementing the solving methodology both in in-house
code and on Bonsai platform. Major contributions of this work include the following:

• We demonstrate an application of RL for RTO problems in chemical processes. Our approach is distinct from traditional
RTO methodologies and we propose potential benefits such as self-adaptiveness and fast inference time. Additionally,
our implementation is generic and has the potential to be extended for analogous operations.

• We discover that RL can find good quality feasible solutions to the RTO problem. We observe that these solutions are
typically comparable with the MATLAB benchmark. Furthermore, we put forward two primary advantages of RL over
the optimization-based benchmark: adaptiveness and fast inference time.

• Previous research has noted that implementing RL in highly constrained environments is challenging (Pan et al., 2021),
(Dalal et al., 2018). We confirm this and present one method of constraint handling - augmenting reward function with
penalty functions during policy network training to penalize the RL agent and prevent the network from prescribing
inputs or outputs that violate variable bounds or process constraints.

• We propose a training scheme to design adaptive RL agents that can generalize to unseen input scenarios and compare
performance against the benchmark solutions.

The paper is structured as follows. In Section 2, we present the problem statement and elaborate upon decision variables,
objective function and process constraints. We cover the details of adopted methodologies for problem solving in Section 3.
Finally, in Section 4 and Section 5, we present our results and conclusions respectively.

2 Real-time Optimization Problem

In this section, we outline the constrained optimization problem. Please note that due to certain confidentiality reasons, we
present a restricted version of the problem, providing only the necessary details and normalized data.

We aim to optimize a two-stage chemical reactor system for the production of a high-value hydrocarbon (HVHC). The
system consists of 𝑟1 reactors in the first stage and 𝑟2 reactors in the second stage, designed to convert raw input gaseous
fresh feed to HVHC in the presence of a catalyst and right physical conditions. A diagrammatic representation of a single
reactor is shown in Figure 1. By adjusting controllable variables, such as reactor temperature, pressure, and the flow of fresh
feed to individual reactors etc., it is possible to optimize the total HVHC yield of the unit. Hence, the objective is to identify
the optimal values of these controllable variables such that the HVHC production is maximized, while adhering to variable
bounds and process constraints. The reactor system is simulated through a thermodynamic first principles-based process model

, 3

implemented in MATLAB. The model accounts for internal process constraints, such as mass balance, energy balance etc.. This
high-fidelity, steady-state model takes manipulated variables and disturbance variables (catalyst activity factors) as inputs. The
model produces the corresponding HVHC production, along with output variables such as the outlet composition of gaseous
products and other performance indicators.

We provide further details about the manipulated variables, disturbance variables, output variables and process constraints
below.

Manipulated Variables. The optimization of HVHC yield involves manipulation of 52 variables that are controllable, also
known as manipulated variables (MV’s). The reactor temperature, pressure, and inlet flow to the reactors are among the
variables that can be tuned. Every MV is associated with a distinct lower and upper bound. We denote the MV’s as a 52-
dimensional vector and use the symbol 𝑚 to represent it.:

𝑚 =

𝑚1

𝑚2

.

.

.

𝑚52

(1)

, where 𝑚𝑖 (𝑖 = 1, 2...., 52) is the 𝑖𝑡ℎ element of 𝑚 with 𝑚𝑖 ∈ [𝑚𝑖
𝑚𝑖𝑛

, 𝑚𝑖
𝑚𝑎𝑥]. 𝑚𝑖

𝑚𝑖𝑛
and 𝑚𝑖

𝑚𝑎𝑥 are the lower and upper bounds,
respectively, for each 𝑚𝑖 , with 𝑚𝑖

𝑚𝑎𝑥 > 𝑚𝑖
𝑚𝑖𝑛
≥ 0.

Disturbance Variables. Disturbance variables (DV’s) correspond to the activity factors of the catalyst in each reactor, and we
represent them using a vector 𝑑 of length 12, where each element 𝑑𝑖 takes on a value in the range [0, 1]. We note that the
catalyst activity factor may have a significant impact on the performance of the reactor system, and therefore, it is essential to
consider them in our RL algorithm.

Output Variables. Output variables (OV’s) are used to characterize the state of the system after chemical reactions in the
reactors are completed. The OV’s consist of measurable quantities such as compound-wise outlet composition, outlet temper-
ature and pressure, key ratios in outlet gaseous products, safety indicators etc., and are determined for each individual reactor.
A total of 228 variables constitute our OV space, each having corresponding lower and upper bounds. The OVs are represented
by a vector 𝑜 that has a length of 228. Each element 𝑜𝑖 is assigned a value in the range [𝑜𝑖

𝑚𝑖𝑛
, 𝑜𝑖𝑚𝑎𝑥], where 𝑜𝑖

𝑚𝑖𝑛
and 𝑜𝑖𝑚𝑎𝑥

are the lower and upper bounds for 𝑜𝑖 respectively, with 𝑜𝑖𝑚𝑎𝑥 > 𝑜𝑖
𝑚𝑖𝑛
≥ 0.

Process Constraints. Two process constraints are taken into account here. The first constraint, denoted as 𝐶1, involves
an upper bound on the total amount of raw gaseous fresh feed that can be supplied to the unit. The second constraint, referred
to as 𝐶2, requires that the inlet pressure of the unit should be greater than its outlet pressure.

We evaluate the performance of the RL-based RTO methodology for two graduated scenarios, namely fixed-DV and
dynamic-DV. In the fixed-DV scenario, a fixed decision variables vector, 𝑑, is used to train the RL agent, which is then evalu-
ated on the same once training is complete. Conversely, in the dynamic-DV scenario, random and admissible sets of DV’s are
employed at each iteration to train the agent. After training, the agent is assessed on unseen DV’s to compare its performance
with the MATLAB benchmark. By utilizing random DV’s in the dynamic-DV approach, the RL agent can discover optimal
MV’s for each corresponding DV, learn underlying patterns, and generalize to unseen DV’s. The goal is to create an RL-based
optimization engine that can effectively optimize the system for any given 𝑑.

3 Methodology

In this section, we propose RL-based methodology to solve the problem introduced in the previous section. We first provide
a brief overview of the fundamentals of RL. Subsequently, we describe the creation of the learning environment for the RTO
problem. We then discuss in-house and Bonsai methodologies for solving the problem.

3.1 Reinforcement Learning
Figure 2 depicts the fundamental learning mechanism in RL. At time step 𝑡, the agent takes an action 𝑎𝑡 and the environment
transitions from state 𝑠𝑡 to state 𝑠𝑡+1, resulting in an immediate reward 𝑟𝑡+1. The agent then uses the state information 𝑠𝑡+1
and the immediate reward 𝑟𝑡+1 to select the next action 𝑎𝑡+1, and the cycle continues.

The optimal policy, denoted by 𝜋(𝑎𝑡 = 𝑎 |𝑠𝑡 = 𝑠), is a mapping from states to actions that maximizes the value function
𝑣𝜋 (𝑠), which represents the long-term expected sum of future rewards:

𝑣𝜋 (𝑠) = E𝜋

[∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡+1 |𝑠𝑡 = 𝑠

]
, (2)

, 4

Fig. 2: Schematic of agent-environment interaction in RL: the agent at time step 𝑡, interacts with the environment, represented
by the state 𝑠𝑡 . Based on its policy 𝜋(𝑎𝑡 |𝑠𝑡), the agent takes an action 𝑎𝑡 , receives a reward 𝑟𝑡 and transitions to a new
state 𝑠𝑡+1 . The goal of the agent is to maximize the expected cumulative reward in the long run

where E[.] denotes the expected value of a random variable given that the agent follows policy 𝜋, and 𝑡 is the time step. Here,
the discount factor 𝛾 ∈ [0, 1] determines the importance of future rewards, with 𝛾 = 0 corresponding to a greedy agent that
only cares about the reward at the next time step, and 𝛾 = 1 corresponding to an agent that values all future rewards equally.
It is important to note that each value function 𝑣𝜋 (𝑠) is tied to a specific policy 𝜋, which dictates the agent’s future trajectory
through the space of states.

RL algorithms can be thought of as iterative updates to a policy that improve the associated value function for all states. If
the agent properly adjusts the policy at each iteration, the policy will continue to improve, resulting in larger and larger values
for the value function for any given state. It is natural to wonder whether the value function ever reaches its optimal value,
𝑣∗ (𝑠). Bellman’s optimality equation, a necessary condition in optimal control theory, provides an answer to this question:

𝑣∗ (𝑠) = 𝑚𝑎𝑥
∑︁
𝑠′ ,𝑟

𝑝

(
𝑠′, 𝑟 |𝑠, 𝑎

) [
𝑟 + 𝛾𝑣∗ (𝑠′)

]
(3)

Here, the transition probability 𝑝

(
𝑠′, 𝑟 |𝑠, 𝑎

)
calculates the probability that the environment will transition to state 𝑠′ with

reward 𝑟 given the current state 𝑠 and action 𝑎. Bellman’s optimality equation gives a set of nonlinear equations that, in theory,
can be solved directly to produce the optimal value function 𝑣∗ (𝑠) for a discrete set of actions and states.

In practice, however, these equations are often not directly solvable due to either a lack of knowledge about the envi-
ronment’s transitions or the state space being too large to allow for a reasonable solution. All RL algorithms are therefore
approximate solutions to Bellman’s optimality equation, and they address these limitations in different ways.

For continuous states and actions, the state and action spaces can be enormous, making it impossible to derive exact
solutions for the optimal value function. In these cases, function approximation methods, such as neural networks, are often
used. Specifically, we can parameterize the approximate value function with parameters 𝜃 as follows:

𝑣(𝑠) � 𝑣 𝜃 (𝑠) (4)

The goal of the RL method in this case is to estimate 𝜃 that produce a value function that is as close to the actual value
function as possible, for example, in terms of reducing the mean squared error (MSE):

𝐿 (𝜃) = 1
2

∑︁
𝑠

[
𝑣 𝜃 (𝑠) − 𝑣∗ (𝑠)

]2
(5)

RL methods can be divided into two main categories: value-based methods and policy-based methods (Sutton et al.,
2018). Value-based methods estimate the value function 𝑣𝜋 (𝑠) or 𝑣∗ (𝑠) directly, while policy-based methods estimate the
policy 𝜋(𝑎 |𝑠) directly.

One popular value-based method is Q-learning, which estimates the action-value function 𝑄(𝑠, 𝑎), which represents the
expected return when starting in state 𝑠, taking action 𝑎, and then following the optimal policy thereafter. The Q-function can
be expressed as:

𝑄∗ (𝑠, 𝑎) = 𝐸𝑠′∼𝑝
[
𝑅𝑡+1 + 𝛾 max

𝑎′
𝑄∗ (𝑠′, 𝑎′)

]
(6)

where 𝑠′ ∼ 𝑝 denotes the next state 𝑠′ being drawn from the transition probability distribution 𝑝. Q-learning aims to find
the optimal action-value function 𝑄∗ (𝑠, 𝑎) by iteratively updating an estimate 𝑄(𝑠, 𝑎) according to the following update rule:

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼
[
𝑅𝑡+1 + 𝛾 max

𝑎′
𝑄(𝑠′, 𝑎′) −𝑄(𝑠, 𝑎)

]
(7)

Here, 𝛼 is the learning rate. The Q-learning algorithm converges to the optimal action-value function 𝑄∗ (𝑠, 𝑎) as 𝛼→ 0.
One popular policy-based method is policy gradient, which directly optimizes the policy by adjusting the parameters of

the policy function. Policy gradient methods update the policy function by following the gradient of the expected return with
respect to the policy parameters. The goal is to find the optimal policy 𝜋∗ (𝑎 |𝑠) that maximizes the expected return:

𝜋∗ (𝑎 |𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝐸𝑠′∼𝑝,𝑟
[
𝑅𝑡+1 + 𝛾

∑︁
𝑎′

𝜋(𝑎′ |𝑠′)𝑄∗ (𝑠′, 𝑎′)
]

(8)

, 5

Fig. 3: Snapshot of Bonsai platform’s home screen for demonstration purpose. Brain ’v01’ is connected to the simulator
’Cartpole’. The simulator includes the step and reset functions. In the central panel, the graph shows the brain’s
gradual learning. The ’Teach’ tab at the top navigates user to the Inkling file and enables its custom configuration

3.2 Learning Environment and Methodology Implementation
We use the first-principles based simulation model to construct the learning environment for the RL agent. A successful run
of the model requires valid inputs: manipulated variables (m) and disturbance variables (d), and produces output variables (o),
along with the HVHC production (Section 2). We note the correspondence between some of the terminologies used in our
model and those used in RL. m corresponds to actions in RL terminology, while a combination of o and d correspond to state
space. The total HVHC production forms one part of the reward for the agent2.

The environment is designed based on the suggested methodology in (Slater, 2019). This setup consists of two key func-
tions: step and reset. The step function takes the current state, 𝑠, and the action, 𝑎, as parameters and outputs the reward,
𝑟, and the subsequent state, 𝑠′. This is known as a single transition step, represented by the tuple {𝑠, 𝑎, 𝑟 , 𝑠′}. The reset
function resets the agent to a default state when a terminal state or condition is reached, or in RL terminology, when a single
episode finishes. Below, we elaborate upon our approaches of in-house implementation and Bonsai platform.

In-house Algorithm Implementation. An actor-critic DRL algorithm called DDPG (Lillicrap et al., 2015) is implemented
in-house. This algorithm is suitable for handling continuous action and state spaces. The performance of DDPG depends
critically on algorithm hyperparameters such as actor and critic learning rates, batch size, soft-update rate (𝜏), discount rate
(𝛾), etc. No single set of hyperparameters can be assumed optimal for all problem types. To tune the performance of DDPG,
we conduct hyperparameter optimization by setting up trial runs of the algorithm with different hyperparameter values and
selecting the one that gives the best performance. We elaborate on our approach in Section 4.1.

Bonsai Platform. The Bonsai platform by Microsoft is a low-code programming platform for creating autonomous sys-
tems using RL. It supports simulators built using MATLAB, Transys, AnyLogic, and provides techniques and infrastructure
for model deployment and training. The platform’s programming language, Inkling, is used to encode concepts into a model,
which is then linked with a simulation of a real-world system and fed into the Bonsai AI Engine for training. The engine lays
out the neural networks and tunes the hyperparameters for optimal training results. A significant advantage of the platform is
its computational resources, allowing for many simulations to be run in parallel to reduce training time.

Bonsai’s dashboard (Figure 3) enables users to examine all training agents, referred to as Brains, as well as their training
state, online/offline assessment, and options for debugging, inspecting, and enhancing models. To get started, Microsoft
provides support through starter Inkling files and online syntax documentation. The loading of the simulator, training, and
assessment are all handled through button clicks on the Bonsai online platform. We integrated MATLAB simulator with
Bonsai’s glue codes to make it platform-compatible.

4 Results and Discussion

In this section, we present the key results. We first discuss the results from in-house implementation, followed by implemen-
tation in Bonsai platform.

2 The other part of the reward signal arrives from a penalization scheme we employ for constraint handling, where a penalty value is
subtracted from the primary reward value. Further elaborated in Section 4.1, 4.2

, 6

Fig. 4: Sample reward curve for DDPG in-house implementation. Best performing hyperparameter values are mentioned
inside the figure

4.1 In-house Implementation
We implement an off-the-shelf actor-critic algorithm, Deep Determinstic Policy Gradient (DDPG) (Lillicrap et al., 2015) for
solving our problem. DDPG is specifically suited for environments with continuous actions and observations space. In the
in-house implementation, we only solve the fixed-DV problem, where we train and evaluate the DRL agent on the same
disturbance variable vector 𝑑.

A common challenge that arises in employing RL for constrained environments is that of invalid actions - during training,
an action is taken which might result in the value of a state variable to lie outside of its prescribed bounds (Nian et al.,
2020). However, ensuring avoidance of constraint violations is critical in our case, as it can lead to risky unit operations.
We implement a simple penalization scheme to deal with this issue. At each interaction with the environment, we assess the
total sum of absolute constraint violations on the action and observation bounds, as well as on constraints 𝐶1 and 𝐶2 (Section
2). These violations are multiplied by constant scaling factors to balance the scales and subsequently subtracted from the
observed reward (HVHC production) to arrive at the final reward value. Although we have used a particular choice of scaling
factors, other options are equally viable. This scheme offers a possible way to incentivize the agent to refine its policy while
simultaneously satisfying the constraints.

The performance of DDPG algorithm is highly reliant on the hyperparameter settings (Henderson et al., 2018). To optimize
the hyperparameters, we conduct multiple runs of our implementation on a high-performance computer cluster using different
hyperparameter configurations. The most suitable hyperparameter values and a sample training curve of the agent is shown
in Figure 4. We observe that a low learning rate (10−6) for both the actor and critic networks facilitates optimal learning of
the agent. Although the penalization scheme implemented to avoid constraint violations is effective to some extent, it is not
entirely foolproof, as some constraint violations may still yield high rewards. To address this issue, we have implemented a
straightforward filtering approach to identify feasible solutions that meet the constraint requirements, i.e., solutions with a high
reward and zero constraint violation. The best feasible solution identified has a reward value of 8.84 tonnes/day, while the
MATLAB optimizer provides an optimal solution at 9.35 tonnes/day. It is essential to note that although our in-house solution
may not be optimal, it provides a viable alternative that adheres to the constraints of our scenario.

4.2 Bonsai Implementation
In this section, we discuss the implementation of our approach on Bonsai platform and present findings for fixed-DV and
dynamic-DV case. We first discuss some key implementation details.

• DRL Algorithm. We use Proximal Policy Optimization (PPO) (Schulman et al., 2017) supported by the Bonsai plat-
form. Similar to DDPG, PPO is also capable of handling continuous state and action spaces.

• Action and Observation Scaling. We utilize the upper and lower limits for state and action variables to normalize their
values. Specifically, we normalize state space between [0, 1] and action space between [-1, 1] for assistance in policy
training.

• Delta Actions. We mentioned in Section 1 about the static nature of real-time optimization problem. To induce pseudo-
dynamics, we have experimented with an approach called delta actions, where we make small adjustments, referred
to as deltas, to a default initial action in each iteration. We concatenate the resulting action array to the state array to
provide the agent with a better understanding of the positive and negative changes in rewards based on the small changes
in actions. This approach aims to improve the agent’s ability to perceive the effects of its actions on the environment
and thereby enhance its learning.

, 7

(a) (b)

Fig. 5: (a) Impact of penalty coefficient on violation of state bounds. The plot shows how increasing the penalty coefficient
limits the values of certain crucial and hard to contain state variables within the range of 0 to 1. (b) Distribution of final
reward attained. This figure displays the median value of the reward achieved in 10 separate runs of the experiment on
Bonsai platform

• Constraint Handling. We use a simple action clipping procedure to clip the action values such that they never violate
the prescribed limits. We handle the constraints 𝐶1, 𝐶2 and limits on the states via a quadratic penalization method,
where we first calculate the square of the total absolute constraint and bound violation. We multiply the resulting number
with a ‘temperature’ factor that is equal to the iteration number during training. We do this in order to ensure that the
agent is penalized heavily for violating constraints in the later iterations. Additionally, we control the total amount of
penalty by multiplying it with a ’penalty coefficient’, whose value is preselected. Penalty coefficient helps in controlling
the scale of the total constraint violation.

4.2.1 Fixed-DV Scenario

As mentioned above, we handle state variable bounds and constraints 𝐶1, 𝐶2, through a combination of quadratic penalization,
penalty coefficient and temperature factor. The final penalty function is arrived upon through experimentation and observing on
what performs best. We demonstrate it through an example. Figure 5a shows the effect of penalty coefficient on constraining
certain critical and difficult to constrain state variables within their safe operational bounds i.e. between [0, 1] on the normalized
scale (red box in the inset). We observe that an increase in the value of penalty factor leads to better chances of meeting
variable bounds. Figure 5b summarizes the performance of Bonsai RL agent for the fixed-DV case. Based on 10 sample
runs, we achieve a median reward value of 9.15 tonnes/day, with a maximum value at ∼9.18. Compared to the in-house
implementation, Bonsai platform clearly displays improved performance.

In Figure 6a, we display the assessment of a trained RL agent. We notice that at the beginning of the episode, the agent
is within the infeasible domain and has a low reward value, however the agent gradually improves as the episode progresses.
Finally, the agent is able to satisfy all the constraints (including bounds) and achieve a higher score. The best solution is
labelled with a red marker and corresponds to the reward value of ∼9.15 tonnes/day. Figure 6(b) compares the final optimal
solution of Bonsai RL approach with the MATLAB benchmark. Interestingly, we observe close qualitative similarities between
the suggested optimal solution by the two methodologies.

4.2.2 Dynamic-DV Scenario

In this section, we report the results for the dynamic-DV scenario, where we train the agent using a sets of training disturbance
variable vector 𝑑 and evaluate its performance on a distinct unseen disturbance variable vector. We construct 70 valid vectors
𝑑, from which the agent randomly selects one for each episode during training. We reserve a separate set of 30 𝑑 vectorsfor
evaluation. The rest of the implementation details are similar to those of the fixed-DV scenario as listed in Section 4.2.

Figure 7 presents a comparison of our results with the MATLAB benchmark. The main panel of Figure 7(a) depicts the
frequency distribution of solutions on test sets of 𝑑 from the Bonsai framework in blue and those from the MATLAB benchmark
in red. Our methodology achieves a median of 9.039 tonnes/day, while the MATLAB benchmark performs better with a median

, 8

(a) (b)

Fig. 6: (a) Performance of a trained Bonsai RL agent. The agent starts in an infeasible domain. Despite a low initial reward,
the agent gradually improves and eventually satisfies all constraints, including bounds, achieving a maximum reward of
∼9.15 tonnes/day. (b) Comparison of Bonsai RL and MATLAB benchmark solutions. The results show a high degree
of qualitative similarity, suggesting the potential efficacy of RL for solving complex optimization problems

of 9.33 tonnes/day. We observed in this case that final Bonsai solutions consistently allowed for some improvement - the raw
fresh feed consumption by the unit, as given by 𝐶1 is not maximally utilized. We therefore could, manually refine the solutions.
We equally distribute the ‘leftover’ amount of raw fresh feed among all the reactors, and observe that the resulting solutions
achieve a higher HVHC production. Figure 7(b) shows the frequency distribution of improved solutions, resulting in an
increase in median reward to 9.179 tonnes/day.

5 Conclusion

In conclusion, this work presents a proof of concept study exploring the application of RL for RTO in a catalytic reactor system.
The challenges of dealing with high-dimensional action and state spaces and satisfying state constraints in industrial processes
are discussed. The study aims to identify the optimal values of controllable variables to maximize the production of a high-value
hydrocarbon while adhering to variable bounds and process constraints. The proposed RL-based approach is compared with
a mathematical optimization-based benchmark developed in MATLAB, and the results show that RL can find good quality
feasible solutions to the RTO problem with potential advantages of adaptiveness and fast inference time. The study also
presents one method of constraint handling through augmenting reward function with penalty functions during policy network
training to prevent the network from prescribing inputs or outputs that violate variable bounds or process constraints. The
work contributes to the exploration of the application of RL in the process engineering and control domain, and the proposed
approach has the potential to be extended for analogous operations. Furthermore, the study briefly evaluates the capabilities
and features of Bonsai, an AI platform for designing autonomous systems, by implementing the solving methodology both
in-house code and on the Bonsai platform.

Acknowledgments This work has been funded through the Shell.ai Sciences Innovation Programme. The authors would
like to thank Hossein Khadivi Heris (Senior Applied AI Engineer, Microsoft) for his help with the Microsoft Bons.ai platform
and productive discussions.

Funding Statement The authors would like to acknowledge the funding of the Shell.ai Futures Programme which has
enabled funding for this research.

Competing Interests None

Data Availability Statement Due to the confidential nature of the data used in this project, access to the data and source
code cannot be provided.

, 9

(a) (b)

Fig. 7: Comparison of Bonsai framework and MATLAB benchmark for dynamic-DV scenario. (a) Frequency distribution
of solutions in blue from the Bonsai framework and in red from the MATLAB benchmark. Our methodology has a
median of 9.039 tonnes/day, while the MATLAB benchmark performs better with a median of 9.33 tonnes/day. (b)
Frequency distribution of improved solutions resulting from manual refinement. The median reward value increases to
9.179 tonnes/day

References

Silver, D , Huang, A, Maddison, C.J, Guez, A, Sifre, L, Driessche, G.V.D, Schrittwieser, J, Antonoglou,
I, Panneershelvam, V, Lanctot, M, Dieleman, S, Grewe, D, Nham, J, Kalchbrenner, N, Sutskever, I,
Lillicrap, T.P, Leach, M, Kavukcuoglu, K, Graepel, T, Hassabis, D (2016) Mastering the game of Go with
deep neural networks and tree search. Nature 529, 484–489.

Silver, D, Schrittwieser, J, Simonyan, K, Antonoglou, I, Huang, A, Guez, A, Hubert, T, Baker, L, Lai, M,
Bolton, A (2017) Mastering the game of go without human knowledge. Nature 570, 354–359.

Mnih, V, Kavukcuoglu, K, Silver, D, Graves, A, Antonoglou, I, Wierstra, D, Riedmiller, M (2013) Playing
Atari with Deep Reinforcement Learning. arXiv, 1312.5602.

Mnih, V, Kavukcuoglu, K, Silver, D, Graves, A, Antonoglou, I, Wierstra, D, Riedmiller, M (2017) Deep
reinforcement learning framework for autonomous driving. Electronic Imaging 19, 70–76.

Xiong, Z, Liu, X, Zhong, S, Yang, H, Walid, A (2018) Practical deep reinforcement learning approach for stock
trading. arXiv, 1811.07522.

Spielberg, S, Tulsyan, A, Lawrence, N.P, Loewen, P.D, Bhushan, R.G. (2019) Toward self-driving processes:
A deep reinforcement learning approach to control. AIChE Journal 65, 1547–5905.

Ernst, D , Glavic, M, Capitanescu, F, and Wehenkel, L (2008) Reinforcement learning versus model predictive
control: A comparison on a power system problem. IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), 39(2), 517–529.

Nian, R, Liu, J, Huang, B (2020) A review on reinforcement learning: Introduction and applications in industrial
process control. Computers & Chemical Engineering, 139, 106886.

Kaelbling, L. P, Littman, M. L, Moore, A. W (1996). Reinforcement learning: A survey. Journal of artificial
intelligence research, 4, 237-285.

Powell, KM, Machalek, D and Quah, T (2020) Real-time optimization using reinforcement learning. Computers
& Chemical Engineering, 143, 107077.

, 10

Pan, E, Petsagkourakis, P, Mowbray, M, Zhang, D and Rio-Chanona, EA (2020) Constrained model-free
reinforcement learning for process optimization. Computers & Chemical Engineering, 154, 107462.

Microsoft Bonsai, (2020) Project Bonsai. https://docs.microsoft.com/en-us/bonsai/product/.

Dalal, G, Dvijotham, K, Vecerik, M, Hester, T, Paduraru, C and Tassa, Y (2018) Safe exploration in continu-
ous action spaces. arXiv preprint arXiv:1801.08757.

Sutton, RS and Barto, AG (2018) Reinforcement learning: An introduction. MIT press.

Slater, N (2019) How to create a custom environment for reinforcement learning.
https://ai.stackexchange.com/questions/12577/how-to-create-a-custom-environment-for-reinforcement-
learning.

Lillicrap, TP, Hunt, JJ, Pritzel, A, Heess, N, Erez, T, Tassa, Y, Silver, D and Wierstra, D (2015) Continuous
control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.

Henderson, P, Islam, R, Bachman, P, Pineau, J, Precup, D, Meger, D (2018). Deep reinforcement learning
that matters. In Proceedings of the AAAI conference on artificial intelligence, 32, 1.

Schulman, J, Wolski, F, Dhariwal, P, Radford, A, Klimov, O (2017). Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.

	Introduction
	Real-time Optimization Problem
	Methodology
	Reinforcement Learning
	Learning Environment and Methodology Implementation

	Results and Discussion
	In-house Implementation
	Bonsai Implementation
	Fixed-DV Scenario
	Dynamic-DV Scenario

	Conclusion

