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Abstract. FMCW radar is emerging as a key technology for contactless
Human Activity Recognition (HAR) in medical settings. While effective
in controlled environments, FMCW radar-based HAR faces challenges
in realistic scenarios, particularly with continuous data streams. Tradi-
tional methods often rely on segmentation, which can be cumbersome,
or fail to handle transitions between activities, leading to errors. This
study introduces a novel approach that enhances activity detection by
refining classifier outputs with simple probabilistic reasoning that takes
into account activity transition probabilities. The proposed method im-
proves the HAR detection F1 score with 6% compared to the baseline
and even slightly improves the classification accuracy which does not
take into historical information about previous activities.
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1 Introduction

FMCW radar technology is a significant breakthrough in contactless sensing
applications for medical use-cases such as Human Activity Recognition (HAR).
Especially, since this technology is unobtrusive and contactless. With radar sen-
sors, it is possible to estimate the location of the patient inside a medical facility,
as well as to perform HAR under all lighting conditions. Knowledge about the
location and type of movement, can provide insights about the patient’s state,
her/his mobility and dangerous situations like falling, staying for a long time in
the toilet or sleep problems. Because of the complex nature of the FMCW signals
for HAR a multitude of data-driven methods was studied for this purpose. How-
ever, the majority of research papers studies only the classification problem of
human events where a machine learning model is evaluated on predefined radar
segments that contain an isolated human activity. In realistic situations, instead
of a classification task, a detection task is targeted where a continuous stream
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of radar is acquired and subsequently fed to a detection model. Evidently, this
challenges the machine learning model more compared to the classification setup.
In the literature, continuous HAR (detection task) has been studied using two
primary approaches. The first is a two-stage process, where the continuous data
stream is initially segmented, and then each segment is classified by a machine
learning model. For example, Kang et al. [3] detect motion changes using prob-
abilistic moments of the time-range map to differentiate between windows con-
taining a single activity and those with transitions between activities. Segments
with a single activity are then classified using a Convolutional Neural Network
(CNN). Another example is the work by Amin et al. [1], which introduces a two-
step approach to analyze movement patterns. This method first uses the Radon
transform on time-range maps to distinguish between stationary activities and
translational movements, followed by applying principal component analysis to
both time-range and time-Doppler maps. The resulting eigenvectors serve as
input features for a k-nearest neighbors classifier. Additionally, the study pro-
poses an ethogram model, which defines a logical framework for state transitions
by narrowing down potential activities that can follow a given action, thereby
enhancing the accuracy of activity prediction. However, these approaches are
heavily depending on the segmentation process which is a tedious task on the
FMCW radar data. The second category of approaches processes continuous
radar data in a single step. For instance, Satyapreet et al. [8] applied a sliding
window over the velocity and acceleration vectors of each target, which were then
fed into a Long Short-Term Memory (LSTM) model. However, the sliding win-
dow method has limitations, as it doesn’t account for transitions between events,
leading to windows that may contain multiple activities and complicating accu-
rate classification. Another method in this category, proposed by Prachi et al. [7],
combines an unscented Kalman filter with an LSTM neural network to predict a
corrected augmented state, comprising both localization parameters and a prob-
ability vector for various human activities. This approach is particularly effective
in correcting model outputs during transitions between successive events, where
confusion is most likely to occur. Additionally, Shrestha et al. [6] proposed using
Bidirectional LSTM (Bi-LSTM) neural networks to process incoming radar data.
Unlike standard LSTM models, Bi-LSTM can capture dependencies from both
past and future data, and the authors demonstrated that Bi-LSTM applied to
time-Doppler radar data outperformed a simple LSTM model.

A common limitation in the studies mentioned is the lack of a comparative
analysis between model performance in classification versus detection scenarios
when a model is deployed in an environment that is different to that used to
acquire training data. Evaluating a model on data from a different environment
enables to better assess the generalization capabilities of the HAR models. This
research proposes a novel approach to HAR that enhances CNN based classi-
fier probability outputs with simple probabilistic reasoning taking into account
activity transition probabilities. The latter enables fitting a detection within a
broader context. The proposed approach intentionally employs a relatively sim-
ple CNN architecture, as the limited amount of available data is insufficient
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to train more complex models with recurrent layers which would easily lead to
overfitting.

In the next section, we will outline the methodologies used in this study,
followed by a detailed description of the experimental setup. The results and
discussion will be presented in the final two sections.

2 Methods

In this section, first an overview is provided about the radar signal processing
that is required to obtain time-Doppler feature maps. It is then explained how
CNNs utilize these features to continuously predict the activity class probabil-
ities. Subsequently, a post-processing procedure based on simple probabilistic
reasoning is explained to clean up the activity estimates. Finally, the metrics
that will later be used for performance assessment are explained.

2.1 Radar signal processing

A standard signal processing pipeline is applied to extract time-Doppler features.
The raw IQ data is processed by a 2D Fast Fourier Transform (FFT) to derive
a range-Doppler matrix per antenna pair. Next, all range-Doppler maps are
accumulated resulting in a single range-Doppler matrix with an improved Signal
to Noise Ratio (SNR). Subsequently, the static object reflections are removed
by subtracting a running mean value over the Doppler axis. The latter range-
Doppler map is transformed to a logarithmic scale with radix 10. Then, it is
further processed by taking the maximum over the range dimension to end-up
with a Doppler vector. This process is repeated for each newly received radar
pattern (a so called frame). As a result a continuous stream of Doppler vectors is
generated. Some example time-Doppler streams for a number of human activities
are shown in figure 1.

2.2 Convolutional neural networks

There are now a plethora of deep learning architectures that have been developed
for a wide range of applications and problem domains. These include CNNs,
LSTM models, and Bi-LSTM networks, amongst others. While LSTM networks
can be effective for processing time-series data like radar features, they typically
require a sizable amount of training data to be optimized well. Since we do
not have access to a sufficient volume of data in this study, we opted to use a
relatively simple CNN model.

CNNs are a popular choice for classification and detection tasks across di-
verse applications. They combine automatic feature extraction from the input
using kernel convolutions with classification using fully connected layers in a
single model. This model can be trained in an end-to-end fashion. As the input
passes through different convolutional layers, the CNN model can learn different
features, from low-level features in early layers to more complex ones in deeper
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Fig. 1. Time-Doppler maps of different activities.

layers. Features can describe patterns across both the Doppler and time dimen-
sion. In this work the CNN model will estimate a vector with activity (class)
probabilities based on the contents of a sliding window (with a certain time
horizon, e.g. 2s) that moves over the continuous stream of Doppler vectors.

2.3 Post-processing

As the estimated class probabilities are likely to be noisy, as indicated earlier,
an FSM-based post-processing method is proposed.

This method processes the data by weighing the class probabilities with ac-
tivity transition probabilities. In this way impossible activity transitions (e.g.
walk directly after sleeping without getting-up in between) are filtered out and
less likely sequences of activities are less likely to be predicted. For this purpose,
transition probabilities are represented by a finite state machine which is used
together with the sequence of predicted activity probability vectors (output of
CNN) in the Viterbi algorithm to predict the most likely sequence of activities.
Note that this work targeted an online method which can only observe past
measurements which matches the properties of the Viterbi algorithm.

Finite state machine (FSM) [4] represent a fundamental concept in automata
theory. They can be used to represent systems with discrete and deterministic
behavior. The key characteristics of an FSM are the finite states, the initial
states, the inputs and transitions which define rules to move from one state
(activity in our case) to another based on the inputs. FSMs find widespread usage
in different applications ranging from text processing and pattern recognition to
digital circuit design.

The Viterbi algorithm [2] is a dynamic programming algorithm used for cal-
culating the most likely sequence of hidden states (activities) from a sequence of
observations (activity probabilities). It is used frequently in the context of hidden
Markov models. It calculates the most likely sequence of activities. It does this
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by recursively considering the current observation and the probabilities from the
previous state, and the transition probabilities. To find the most likely sequence
of states, it then works backwards through these calculated probabilities.

In this work, we propose the following procedure: A CNN translates the
sequence of Doppler vectors (generated for each radar frame) into a sequence
of activity probability vectors. A sliding window of a specified length (e.g., 40
frames) then moves across this sequence with a defined hop size (e.g., 10 frames).
Each sliding window is processed by the Viterbi algorithm to identify the most
likely sequence of activities. For the Viterbi algorithm, a trellis diagram is con-
structed, where each column represents the possible activities at a specific time
frame, along with their corresponding probabilities. The number of columns in
the trellis corresponds to the number of activity probability vectors within the
sliding window. In Figure. 2 an example trellis diagram is given. Considering
a matrix T ∈ Rc,n with c the number of activities and n the number of time
frames the values in T can be calculated using the following equation:

Ti,j = max
k

(Tk,j−1Ak,jPi,j), (1)

where Ti,j indicates the probability of being in state i at time step j, ∀k, Tk,0 =
1/c, Ak,j is the transition probability from state k to state j and Pi,j is the
probability generated by the CNN activity classifier for event i at time step j. The
transition probabilities Ai,j are expected to satisfy the constraint ∀j,

∑c
i=1 Ai,j =

1. Note that is process is repeated after shifting the sliding window with a certain
hop size.

Once the trellis data structure T has been constructed for the given sliding
window a backward trace is used to determine the most likely sequence (path
through the trellis diagram) of activities.

Fig. 2. Example trellis diagram with some best path found with the Viterbi algorithm.
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2.4 Activity-based metrics

To evaluate the proposed detection methodology, an activity-based evaluation
method was used4. In such method, the subjectivity of the temporal boundaries
is alleviated by allowing some degree of misalignment called a collar between the
compared activities in the reference and system output [5]. An activity instance
is counted as a true positive if it has the same label as the corresponding ref-
erence activity, and its temporal boundaries lie within the permitted temporal
collar with respect to the reference activity. The condition is used here for both
onset and offset. Fig. 3 illustrates the possible cases when both onset and offset
conditions are used with a collar of x ms. Activity-based evaluation is more intu-
itive for humans interpreting the result of an activity detection system, because
it expresses the performance in terms of activity instances being detected.

Fig. 3. Temporal misalignment’s between ground truth and model predictions.

Using the previous methodology a confusion matrix with True Positives (TP),
False Positives (FP), True Negatives (TN), and False Negatives (FN) can be
calculated. Based on these the recall, precision and F1-score can be calculated
as follows.

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1 = 2× Precision × Recall
Precision + Recall

.

4 Note that an activity typically lasts longer than the duration of the sliding window.
As a result, a single activity will span multiple CNN predictions, allowing these pre-
dictions to be evaluated individually. In activity-based evaluation, individual pre-
dictions are first combined into distinct activity events, which are then compared to
the ground truth.
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3 Experimental setup

In this section, we first provide a brief overview of our HAR dataset, followed
by an explanation of our experimental setup.

3.1 Data set

The dataset was collected in two distinct environments designed to simulate
different settings. Environment A, resembling a hospital room, measured 2.3 m
x 5.8 m x 3.25 m and was equipped with medical beds, a table, and medical
equipment. The radar system was installed on the ceiling, providing coverage of
the room. The two beds were positioned at a 45° angle relative to the radar’s
line of sight, with a chair and table setup placed between them, allowing for
varied activity scenarios. Environment B was arranged to represent an ambient
assisted living situation, with similar dimensions of 2.3 m x 5.8 m x 3.25 m.
This room featured a sofa, TV, a table with four chairs, and a sink, creating a
more cluttered and spatially constrained environment compared to Environment
A. The radar was again mounted on the ceiling, capturing data across a room
filled with more furnishings and reduced open space, which introduced additional
complexity to the activity scenarios.

Participants in both environments were asked to perform a sequence of activi-
ties without specific instructions on how to execute them, ensuring no concurrent
activities occurred. Each activity was annotated using camera images, marking
the on- and offset times on the time-Doppler maps. This setup allowed for de-
tailed analysis of activities considered being: walk, sit-down, lay-down, stand-up,
get-up and hand-movement. Each had varying numbers of occurrence recorded
in each environment:

– Environment A: In this setting, 10 participants each performed 4 different
scenarios, repeating each scenario 5 times. Every scenario consisted of a
series of activities. The dataset includes a total of 246 "walk" activities, 96
"sit-down," 96 "stand-up," 42 "hand-movement," 108 "lay-down," and 108
"get-up" activities.

– Environment B: In this setting, 5 participants each performed a sequence of
activities, repeating them 5 times. This dataset contains 78 "walk" activities,
46 "sit-down," 48 "stand-up," 25 "hand-movement," 25 "lay-down," and 24
"get-up" activities.

3.2 CNN classifier

The CNN architecture used in this work consists of 4 convolutional layers with an
increasing number of filters (8, 16, 32, 64 respectively), followed by max pooling
along the frequency axis for the first 3 layers. After the convolutional layers,
there are 2 fully connected layers with 32 perceptrons each, and the output
layer uses a softmax activation for multi-class classification probabilities. The
model was trained using categorical cross-entropy loss and the Adam optimizer,
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with an initial learning rate of 0.0001 that was dynamically reduced during
training. Regularization techniques such as dropout, batch normalization, and
L2 regularization were used to prevent overfitting. Importantly, the main purpose
of this work is to compare the classification and detection performance with and
without post-processing, so the CNN classifier model was kept fixed across all
experiments to ensure that any differences in performance could be attributed to
the post-processing techniques rather than variations in the underlying model.

3.3 Finite state machine

In order to enable FSM-based post-processing an FSM containing the transition
probabilities between activities is defined. The FSM is given in (Fig. 4). For
demonstration purposes the transitions between the activities were defined using
prior knowledge about the activity sequences that occurred during the data
collection campaign. For instance, the transition from lay-down to walk was
not present during the data collection since a person first stands up before the
person starts walking. Although in practice after walking a person can make
hand movements this transition was not added to the FSM as it did not occur in
the data set. The transition probability of the self-loops were set to a relatively
high value of 0.8 since an activity is more likely to be followed by itself in the
next frame, given that each radar frame and hence corresponding probability
vector corresponds to a time window of 50 ms.

Fig. 4. State automata for human movement events
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4 Results and Discussion

The proposed methodology was evaluated in a cross-domain setting, wherein the
model is initially trained using data from one environmental context and subse-
quently assessed on a distinct, unobserved environment. This approach allows to
better gauge the model’s generalizability and robustness when confronted with
novel environmental conditions. Table 1 shows classification and detection re-
sults. It reports the mean and standard deviation over 10 runs for each case.
The classification results are obtained when prior knowledge about the onset
and offset times is available for the CNN model. Detection results show the per-
formance of the algorithm when it is fed with a continuous stream of Doppler
vectors without prior knowledge concerning the onset and offset times of activi-
ties. Note that, as indicated before, for the latter approach collars were used to
allow some acceptable misalignment between the ground truth and predicted on-
set and offset times of activities. More specifically, a tolerance of 5 radar frames
(0.25 seconds) for both the on- and offset times was allowed. As a baseline, a
method that applied majority voting on a sliding window of 40 CNN model out-
put vectors with a hop size of 40 was used. For the proposed detection method
a sliding window size of 100 frames and a hop size of 40 frames was used. A hop
size of 40 was selected as this is close to the shortest event (sit-down) which has
an average duration of approximately 30 frames. Analysis of the results reveal
that the F1 scores obtained for both environmental contexts (AAL and Hospital)
drop when comparing the classification performance with the baseline detection
performance. However, when historical context is added by the simple Viterbi
based reasoning approach that is proposed the performance again is comparable
or slightly better compared to the classification performance.

Furthermore, a systematic ablation study was conducted to evaluate the im-
pact of sliding window lengths for the Viterbi algorithm implementation, as well
as different hop sizes between consecutive sliding windows. In table 2 the results
indicate that for both the AAL and Hospital scenarios, the best F1 performance
is achieved with a sliding window size of 100 and a hop size of 40.

5 Conclusion

In this work we proposed a method that enhances FMCW based HAR by refining
classifier outputs with simple probabilistic reasoning taking into account activity
transition probabilities. The approach demonstrated a slight improvement in the
F1-score when compared to classification tasks which do not take into account
information about prior activities. The latter, for example, enables implausible
human activity transitions to be eliminated. In this study the HAR detection
models were evaluated on data that was recorded in a different environment
compared to that used to generate the training data. While not explained in
this article this causes the performance to drop compared to when the model is
evaluated on data from the same environment. Future work will study means to
make HAR detection methods more robust to changes in the environment.
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Table 1. This table shows both classification and detection results. For each result an
evaluation was performed on data from a setting from which no data was used during
training. With respect to detection the proposed method was compared to a baseline
that only uses majority voting to merge CNN predictions to activity events prior to
perform an activity-based assessment. For detection a sliding window of 100 frames
and a hop size of 40 frames was used.

F1 Recall Precision

Environment/type µ± σ µ± σ µ± σ

AAL/classification 72.7± 4.4 73.7± 3.7 75.6 ± 2.4
AAL/detection-baseline 69.5± 0.2 79.6 ± 0.3 62.0± 0.4
AAL/detection-proposed 75.1 ± 0.2 78.8± 0.2 71.8± 0.2

Hospital/classification 80.1± 2.8 82.3± 2.5 83.4 ± 2.9
Hospital/detection-baseline 74.3± 0.1 84.3± 0.1 66.4± 0.1
Hospital/detection-proposed 80.7 ± 0.3 85.3 ± 0.1 77.3± 0.8

Table 2. Ablation study concerning the impact of the sliding window and hop size on
the performance of the proposed method.

F1 Recall Precision

Window Size Hop Size µ± σ µ± σ µ± σ

AAL

50 20 67.8 ± 0.11 84.3 ± 0.15 56.7 ± 0.10
100 10 62.6 ± 0.10 84.1 ± 0.16 49.9 ± 0.07
100 20 70.4 ± 0.08 84.3 ± 0.12 60.4 ± 0.07
100 40 75.1± 0.17 78.8 ± 0.26 71.8 ± 0.15
150 20 67.8 ± 0.11 84.3 ± 0.15 56.7 ± 0.10

Hospital

50 20 73.0 ± 0.04 85.5 ± 0.12 63.7 ± 0.03
100 10 65.9 ± 0.02 86.4 ± 0.05 53.3 ± 0.03
100 20 72.5 ± 0.04 86.2 ± 0.06 62.6 ± 0.04
100 40 80.7 ± 0.31 85.3 ± 0.15 77.3 ± 0.79
150 20 72.9 ± 0.05 85.3 ± 0.12 63.7 ± 0.03
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