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Abstract. The primary promise of quantum computing lies in its poten-
tial to surpass classical computation by leveraging quantum mechanical
effects. However, the presence of noise in quantum hardware is a cru-
cial problem that limits the time and size of any quantum computation.
The field of Quantum Error Mitigation emerged as an alternative ap-
proach to Quantum Error Correction in order to reduce errors on noisy
intermediate-scale quantum devices at the cost of additional computa-
tion time. This paper presents a proof of concept deep learning approach
to mitigate quantum noise and includes preliminary experimental results
that demonstrate the potential of sequential models in this domain. Dif-
ferent from current state of the art, these models allow the sequential na-
ture of quantum circuits to be encoded and used to predict and mitigate
quantum noise. Experiments using Clifford circuits show that sequential
models can deal with different structures of circuits with limited compu-
tation overhead during the inference stage. Results are compared to the
current state of the art machine learning technique for Quantum Error
Mitigation as well as to the conventionally used zero-noise extrapolation.
Preliminary experimental results show that the use of sequence models
should not be overlooked as they can provide advantages over current
state of the art methods.

Keywords: Quantum Error Mitigation · Deep Learning · Sequence Mod-
els.

1 Introduction

Achieving a practical quantum advantage in the Noisy Intermediate-Scale Quan-
tum (NISQ) era is one of the most desired objectives in the field of quantum
computing. A primary obstacle in this pursuit is the presence of quantum noise
that corrupts the information flow in the hardware. Quantum noise refers to dif-
ferent types of sources and consequent errors that can affect quantum systems:

– Coherent Noise: errors that maintain phase relationships and can be caused
by systematic issues like control errors and unwanted interactions.
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– Incoherent Noise: random errors that result from interactions with the
environment, leading to loss of coherence in the quantum state.

– State Preparation and Measurement (SPAM) Noise: errors that oc-
cur during the initialization of qubits and during the readout process.

– Projection Noise: errors associated with the probabilistic nature of quan-
tum measurement, affecting the precision of the measurement outcomes.

To address these issues, concurrent advancements are being made on both
hardware and software fronts. Hardware improvements focus on developing de-
vices with a high number of qubits, enhanced connectivity between them, and
one above all reduced gate errors. On the software side, efforts concentrate on
algorithmic solutions that mitigate computing errors by leveraging additional
computational resources and on the design of algorithms that employ shallower
quantum circuits.

In this scenario, there are two main approaches to address quantum noise in
quantum hardware:

– Quantum Error Correction (QEC) has seen fast development yielding
pivotal theoretical [4,17] and experimental results [1]. Pivotal is the thresh-
old theorem that demonstrates that fault-tolerant quantum computation on
noisy quantum hardware is possible if errors could be reduced below a finite
threshold [2]. However, implementing these QEC techniques requires a signif-
icantly larger number of physical qubits in order to realise the logical qubits
required for computation. As such, QEC represents the natural solution for
achieving fault-tolerant quantum computers [5], but it shows limitations on
NISQ devices [16].

– Quantum Error Mitigation (QEM) emerges as an approach tailored on
NISQ devices. In fact it does not require extra qubits but a post-processing
procedure [10] that leverage classical computational resources. Famous ex-
amples include Zero-Noise Extrapolation (ZNE) [7], Probabilistic Error Can-
cellation (PEC) [19] and Virtual Distillation (VD) [8]. Nevertheless, QEM
techniques may face challenges in fault-tolerant quantum computers, as they
require a large number of quantum measurements on several circuits that
grow exponentially with the number of qubits, resulting in substantial run-
time overheads [3]. The issue of the runtime overhead is not only eventually
significant on fault-tolerant devices but also on NISQ devices. This is one of
the main challenges for QEM methods nowadays.

We remark the role that QEM plays on quantum computing for near-term
applications, as shown in the previous noteworthy attempts [6,12].

Nevertheless, the exponential sampling overhead associated with QEM, due
to the increasing number of quantum circuits to run in order to have good error
mitigation estimator, pose significant challenges [3]. The solution to these sam-
pling overheads lies in the generalisation of noise modelling and making a QEM
approach that can be circuit independent, or at least, that can predict the noisy
behaviour of a circuit based on data collected for other circuits. This is the main
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idea behind QEM-ML methods [11,18,13], that employ Machine Learning and
its generalisation capabilities to offer a cost-effective alternative. The idea is to
trade training overheads for inference time overhead. Current state of the art
has tested various machine learning methods, including linear regression, ran-
dom forests, multi-layer perceptrons, and graph neural networks, and compared
their performance across different circuits, noise models, and applications [13].
Random forests (RF), as per usual, are quite successful at balancing complexity
and efficacy. They notably also outperform ZNE in terms of performance as well
as running time.

This early state of the art comes with many interesting research questions
that might be addressed [13]. The best-performing model, random forests, ex-
tracts simple quantum circuit features but underutilised the circuit’s structure.
Alternative models, like graph neural networks, that did use the circuit’s struc-
ture, did not perform as well as RF and ZNE [13].

In this work, we focus on deep learning, addressing the question of whether
and to what extent the ordered structure of a quantum circuit can be used to
learn and subsequently mitigate noise effects to achieve a specific objective under
limited resources and varying noise levels.

Contributions In this paper, we perform an initial investigation into the use
of the sequential circuit structure [13] and how can we expand the set of features
used to represent the quantum circuit, with the intend of creating a QEM-
ML method that can better generalise to different and most importantly longer,
quantum circuits. We show that even a simplified sequential deep learning model
is capable of mitigating the effects of quantum noise without the need for addi-
tional mitigation circuits at inference time.

We present a model structure that leverages the sequential nature of the
quantum circuit and information on the backend that executed the quantum cir-
cuit and even without taking the connectivity between different qubit paths into
account, reaches the same performance as conventional zero-noise extrapolation
and the recently proposed random forests approach. This new model combines
long short-term memory (LSTM) with a classical feed-forward network, enabling
it to mitigate errors in circuits with greater circuit depth more effectively. We
illustrate this performance on circuits of various depths. The analysis indicates
that circuit structure heavily influences the quality of the mitigated result and
is something that should not be overlooked. We aim to stimulate discussion in
the emerging field of QEM-ML and show, through limited experiments, that
deep learning models present a promising approach to enhance the accuracy of
quantum error mitigation while maintaining relatively low training overhead.

2 QEM-ML method

In this chapter, we delve into the core methodology of our contributions to QEM-
ML. We begin by examining the process of encoding quantum circuits into a set
of features that effectively capture their sequential gate structure. The aim is
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Fig. 1: The Quantum Error Mitigation with Machine Learning (QEM-ML)
framework by the paper Machine Learning for Practical Quantum Error Mit-
igation [13]. We pass a quantum circuit into an encoder which creates a set of
features that are then, together with a noisy expectation value passed into a
ML model. This model then makes a prediction which is compared with the
ideal expectation value. The error then backpropagates through the parameters
of the ML model that updates its weights accordingly. The result should then
be a model that is capable of predicting the noise-free expectation value [13].

to transform quantum circuits into a latent vector space, from which a neural
network can predict expected noise and produce mitigated expectation values
(see Fig.1). This chapter is structured to guide the reader through the encoding
strategies, the analogy used for understanding, and the specific technical steps
involved.

2.1 Encoding: Quantum Circuits as Sequences

Encoding a quantum circuit into a set of features is at the heart of every QEM-
ML method [13]. We want to be able to encode quantum circuits into latent
vector space from which a neural network can estimate the expected noise, and,
when combined with the noisy expectation value, produce a mitigated expecta-
tion value. Because we assume that information about the full sequential shape
of the quantum circuit is important to accomplish this, we want the encoding to
be able to retain the circuit structure. To do so, we will make use of an analogy
that will hopefully help the reader understand the thought process behind the
encoding strategy.

An NLP Analogy We can imagine the sequence of operations applied to a
qubit as a sentence, where each gate functions as a word within that sentence.
In this analogy, a quantum circuit becomes a collection of parallel, interacting
sentences, one for each qubit. Each sentence begins with a word that symbolizes
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the characteristics of the particular qubit on which the rest of the sentence will
act. Subsequent words, representing gates, are defined by a combination of 7
features that describe the gate.

Where the analogy becomes a bit obfuscated, is in the fact that these sen-
tences are indeed interacting, namely at any point where a two-qubit gate, such
as a CNOT, is used. For now, we will represent CNOT gates only at the single
sentence level, meaning for each qubit separately. Modelling the interactions be-
tween accumulated noise information between different qubits is left for future
work.

Fig. 2: Encoding the quantum circuit influencing a qubit as a sequence of gates.
The Figure shows a Recurrent Neural Network — in this case an LSTM, see
Section 2.2 — rolled out in the "time-dimension" to which all information about
the used gates is given in sequence. All connections processing gate-information
and passing forward the partial encoding of the circuit use the same weight
matrix.

Tokenizing Quantum Gates The quantum circuit encoding is preceded by
the choice of a backend. Then, the circuit is transpiled into hardware-native
gates that adhere to the used quantum device’s connectivity. We used the native
transpilation procedure in Qiskit [9]. The transpilation process dictates the order
of gates (words) in the sentences and is crucial because it allows the model to
construct a hardware specific noise profile, as circuit noise profiles are heavily
hardware dependent [9,14]. After transpiling the circuit on the desired backend,
we obtain the hardware specific operations through the data attribute of the
QuantumCircuit object in Qiskit [9]. Each operation specifies the qubit it is ap-
plied to, the type of operation, and other relevant parameters, all of which can
then contribute to the encoding and the overall noise profile.

Gate/Qubit Representations The transpiled quantum circuit provides the
required backend information and the feature list for each gate and qubit. Each
feature list has length 7. Gates use the first value to represent the type of gate
used. This uses a label encoding with a dictionary for each unique gate-integer
pair available in the Qiskit library [9,13]. The 2nd entry represents the angle
parameter of rotation gates. If the gate is not a rotation gate, this entry is set
to 0.
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Qubits use the 3rd, 4th and 5th values. At the start of a sentence representing
a qubit and its operations, we record a special "word" for the parameters of the
corresponding qubit. The parameters available for the qubit are the relaxation
time T1, the dephasing time T2 and the readout error [9].

Additionally, we also make use of the gate error and gate length for each gate
used in the quantum circuit (features 6 and 7) that are native to that backend.
The main difference for two-qubit gates is that gate errors and gate lengths are
different depending on the specific qubit of the pair (again obtained from the
backend).

2.2 The Network Architecture

To encode all operations on a qubit in sequence, we employ a recurrent neural
network (RNN) that can encode the sequence of gates. Information about how
the circuit manipulates a specific qubit is fed to the recurrent network sequen-
tially. The RNN uses that sequential information to encode the part of the circuit
that deals with that qubit and its resulting noise profile.

Long Short-Term Memory Long Short-Term Memory networks (LSTMs)
are a specialized type of recurrent neural network designed to overcome the lim-
itations of traditional RNNs (such as the Elman Recurrent Neural Networks) in
capturing long-term dependencies in sequential data [20]. Introduced by Hochre-
iter and Schmidhuber in 1997, LSTMs excel in tasks requiring context over
extended sequences. They achieve this by incorporating gating mechanisms to
selectively retain or forget information across different steps of the sequence to
be encoded, resolving issues like vanishing gradients [20].

Figure 2 shows how the LSTM is used to encode qubit operations. We instan-
tiate a separate sequence model (LSTM) for each qubit available to the backend.
The sequence model processes the circuit specifics into an NL-dimensional latent
space that should help predict the noise-profile of the circuit.

Complete Network Architecture The different latent noise-profile represen-
tations for each of the qubits are simply concatenated and fed into a standard
feedfoward network together with the index and unmitigated, noisy, expectation
value of the qubit we want to predict the mitigated value for.

Hyperparameters such as the number of LSTM units and layers, the number
of hidden units in the feed-forward network, dropout and learning rates were
determined through a grid search described in the experimental set-up.

This network architecture is overly simple and only suggested for the proof
of concept in this paper. This simple approach nicely illustrates the promise of
sequential encodings of the quantum circuit as even in this limited approach,
experiments will show that it can reach the same level of performance as state
of the art techniques.

The fact that a different LSTM is used for each qubit might seem superfluous
at first glance, and certainly isn’t training data efficient. However, the use of a
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Fig. 3: The QEM model architecture. The encoded qubit operations are concate-
nated and extended with a qubit index and the measured, noisy expectation
value for that qubit. The goal of the network is to predict a mitigated, less noisy
expectation value for the qubit.

single LSTM to encode the operations on all qubits might also be suboptimal
as actual hardware implementations of different qubits might show differences
in their noise profiles beyond what is captured by the qubit and gate encodings
we currently feed into the LSTM.

Additional architectural design that for example can take qubit intercon-
nections such as those caused by two-qubit gates, or that offer a more elegant
solution to qubit identification compared to the used qubit index input in the
feed-forward network are expected to bring the performance of sequentially ca-
pable methods beyond the current state of the art.

3 Experimental Setup

In this section we describe the experimental setup consisting of the data gen-
eration process and the details of the deep learning model. We evaluate our
deep learning model for quantum error mitigation across two types of quantum
circuits: unstructured random circuits and structured circuits derived from the
Ising model. For both circuit types, we vary the circuit depth to assess the model
on different quantum noise conditions. Circuit depth refers to the number of two-
qubit gates applied in a quantum circuit, that in our case are CNOTs. This is
because the noise generated by those gates is several orders of magnitudes big-
ger than one-qubit gates. Varying the circuit depth allows to evaluate how our
model performs under different noise conditions, with shallow circuits being less
affected by noise but limited in computational complexity, and deeper circuits
being more prone to noise but capable of handling more complex computations.

We evaluated a set of quantum circuits using a noise-free setting and ob-
taining a noisy expectation value through simulation. We then allow the model
to train on predicting the noise-free expectation values using the circuit details
and the noisy expectation value as input. We calculate the error of the predic-
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tion as the squared difference between the mitigated expectation value and the
expectation value obtained in the noise free setting.

We instantiate, train and test the prediction models using the PyTorch library
[15]. The models are trained using a mean squared error (MSE) loss function and
the Adam optimizer. The parameters tuned by the optimizer are the sequence
model and the feed-forward network parameters. The number of epochs has been
set to 5 which seemed sufficient to reach convergence.

3.1 Data Generation

To ensure a rigorous comparison with previous work, we generated data as dis-
cussed by Daley et al. [6], as they share a public Github repository including data
and the code to generate it. We work with two main classes of data. The first class
consists of random 4-qubit quantum circuits, where we measure the expectation
value of the observable given by the Ẑ Pauli on each qubit: Ô = Ẑ0⊗Ẑ1⊗Ẑ2⊗Ẑ3.
For this class we generated 500 training circuits and 200 testing circuits for three
different circuit sizes as defined by the number of two-qubit gates:

– shallow with a number of CNOTs ranging from 1 to 18;
– medium with a number of CNOTs ranging from 20 to 30;
– deep with a number of CNOTs ranging from 30 to 40.

The second class of circuits consists of Trotterized circuits. Specifically, we use
first-order Trotterization to approximate the evolution of the 1D transverse-field
Ising model, where the continuous time evolution is broken into discrete steps.
Each step alternates between applying the Hamiltonian’s interaction terms and
the transverse-field terms. Unlike the first class of circuits, this class imposes
a strong structure on the quantum circuit, as there are patterns of gates that
repeat. This circuit form was chosen because it represents a number of different
quantum computing applications. This class was subdivided in terms of circuit
depth, that is a measure of how many “layers” of quantum gates, executed in par-
allel, it takes to complete the computation defined by the circuit [21]. Analogue
to the first class of circuits, we generated 500 training circuits and 200 testing
circuits for each size:

– shallow with a depth ranging from 1 to 60;
– medium with a depth ranging from 60 to 120;
– deep with a depth higher than 120.

In order to train our supervised model we had to generate both the noisy
and ideal expectation value for each circuit. For this purpose we used Qiskit,
that gives access to back-ends that simulate the error in IBM’s real devices. In
our case, we simulated the noisy output on the FakeLima back-end, which sim-
ulated the incoherent noise. We used a noise-less qasm simulator to calculate
the ideal expectation values. The choice of this dataset facilitates direct per-
formance comparisons and reproducibility of results. We align our experimental
setup with existing benchmarks, thereby enabling a transparent assessment of
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our contribution. Note that in theory this process can be employed to study
Clifford circuits but it runs into key scaling limitations on circuits that are not
efficiently simulated classically.

3.2 Training and Hyperparameter Search

We employed a grid search to tune the hyperparameters, including the number
of layers, hidden units, dropout rates, and learning rate. The models have been
evaluated using the Root Mean Squared Error (RMSE).

We train the model for each qubit for 4 training epochs, which proved suffi-
cient for the chosen the learning rates. In fact, increasing the number of epochs
resulted in the model starting to overfit and a lower accuracy on the validation
set. After training, we evaluate the performance of the model and save the results,
the model parameters and the corresponding configuration of hyperparameters.
We do this for each hyperparameter combination to obtain the hyperparameters
and the best model parameters that yield the lowest RMSE.

The obtained hyperparameters are the same for each dataset and reported
in Table 1.

Table 1: Hyperparameters of the model chosen after a grid search.
Parameter Name Value

L
S
T

M Hidden Layers 2
Hidden Units 32
Dropout Rate 0.05

F
F
N

Hidden Layers 2
Hidden Units 64
Dropout Rate 0

Learning Rate 0.07

4 Experimental Results

We evaluated the performance of the model with the Random Forest imple-
mented in [13], representing the state of the art on the datasets chosen. The
metric used for the comparison is the Root Mean Square Error (RMSE), and
the main results are provided in Table 2. Although the structure of the sequential
model implemented is still naive it reaches comparable results to RF methods
that do not incorporate sequential information. This hints at the importance
of capturing the order of operations in quantum error mitigation. Additionally,
we analyzed the impact of circuit depth on performance. Our model maintained
strong performance with increasing depth, whereas other models showed a de-
cline. However, when comparing circuits with varying numbers of CNOT gates,
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we observed a slight decrease in performance for our model. This was antici-
pated, as our approach does not account for channel interference effects intro-
duced by multiple CNOT operations. Despite this, our method still performs
competitively, highlighting its robustness and the importance of incorporating
sequential information in quantum circuit analysis.

We observe that for the Ising model, our approach does not outperform
RF. We assume this can be attributed to the ability of RF to effectively capture
patterns, even when they are repetitive or redundant, due to their randomness in
feature selection, which prevents overemphasis on any single feature and makes
them better-suited for homogenous data with repeated patterns. In contrast,
while neural networks can learn complex patterns, they are prone to overfitting,
particularly with redundant information, as they may over-focus on repeated
patterns, leading to poor generalization and performance on unseen data.

Table 2: Results on unstructured and structure class of quantum circuits. The
table presents the RMSE values averaged over the four qubits.

Random Circuits

Model Shallow Medium Deep

Noisy 0.15 0.19 0.22
Random Forest 0.10 0.15 0.19
LSTM+FFN 0.10 0.15 0.18

Ising Circuits

Model Shallow Medium Deep

Noisy 0.07 0.09 0.12
Random Forest 0.01 0.02 0.03
LSTM+FFN 0.03 0.04 0.06

5 Discussion

We found that the new model architecture provides performance that is on
par with, or slightly superior to, zero-noise extrapolation and random forest
predictions. This performance was achieved with reasonable training times and
without the need for additional mitigation circuits.

The experiments demonstrate that the order of gates and operations signif-
icantly impacts model accuracy, and that simple machine learning models can
be enhanced by incorporating sequential circuit information.

The study primarily uses simulated quantum circuits for training and testing.
Applying the model to real quantum devices with their inherent noise charac-
teristics and variability is a critical next step. This will help validate the model’s
practical applicability and identify any additional challenges that may arise.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4: Comparing model performance on the Random Circuits Dataset. The bar
plots on the left show the absolute error obtained by the LSTM model compared
to Random Forest (RF) and the noisy version for each of the four qubits (0, 1, 2,
3) of the circuits. The plots on the right display the error distribution of the noisy
and mitigated models against the ideal expectation for qubit 0, across different
circuit depths: shallow ((a), (b)), medium ((c), (d)), and deep ((e), (f)).
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(a) (b)

(c) (d)

(e) (f)

Fig. 5: Comparing model performance on Trotterized Ising Circuit Dataset. The
bar plots on the left show the absolute error obtained by the LSTM model com-
pared to Random Forest (RF) and the noisy version for each of the four qubits
(0, 1, 2, 3) of the circuits. The plots on the right display the error distribution of
the noisy and mitigated models against the ideal expectation for qubit 0, across
different circuit depths: shallow ((a), (b)), medium ((c), (d)), and deep ((e), (f)).
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We acknowledge the importance of hyperparameter tuning for model per-
formance. A more exhaustive exploration of the hyperparameter space, possibly
using automated tuning techniques, could further enhance the model’s accuracy
and efficiency. Furthermore, we want to highlight limitations on the scalability
of the data generation even with the use of a quantum hardware. Since we em-
ploy supervised learning we must know the noiseless target values, which are
efficiently computable only on the restricted class of stabilizer states.

6 Conclusions

In this article we have investigated the encoding of quantum circuits for the
implementation of a deep learning model for quantum error mitigation. Specifi-
cally, we explored the potential of leveraging the ordered sequence of gates using
sequential models. We compared our model with the state-of-the-art Random
Forest implemented in [13], obtaining comparable results on different quantum
circuit size. Our preliminary numerical results are promising and warrant further
investigation.

Here are several key directions for future work. First, enhancing the model’s
architecture could involve developing more sophisticated approaches that better
integrate qubit interconnections and more precisely handle interactions between
qubits. Additionally, finding more effective feature representations could improve
the model’s ability to capture relevant circuit characteristics. Improving the scal-
ability of the data generation process is also crucial for advancing the application
of these models. Future research could involve testing the model’s performance
through multiple experiments that explore various methods of defining circuit
depth, taking into account the different classifications of shallow, medium, and
deep circuits used for the two classes of circuits investigated, as well as employ-
ing different matrices for comparison. Finally, we can compare the performance
of different machine learning architectures using various types of circuit classes.
This approach would offer a deeper understanding of how the models perform
across different inputs, particularly as they vary in complexity and homogeneity.

We hope that this work will contribute to the ongoing discussion around
quantum error mitigation within the machine learning community.

Data Availability The data and code of this study are openly available at GitHub
repository.
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