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Abstract. Critically ill children often suffer from impaired neurocogni-
tive functions years after ICU (intensive care unit) discharge. To assess
neurocognitive functions, children are subjected to a fixed sequence of
tests. Undergoing all tests is, however, arduous, resulting in a possibly
interrupted evaluation where several neurocognitive deficiencies might
remain undetected. We propose a machine learning approach to predict
the optimal order of tests for each child. More specifically, our approach
groups the tests according to the neurocognitive functions and builds a
multi-target random forest for each group. Further, we combine the out-
puts into a ranking that prioritizes the worse neurocognitive outcomes
of each patient. Our experiments demonstrate that machine learning can
be competitive or even superior to the current clinical practice.
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1 Introduction and Method

Critically ill children often suffer from impaired neurocognitive functions years
after PICU (paediatric intensive care unit) discharge [5]. In order to assess these
impairments, children are subjected to a standard evaluation procedure which
adopts a fixed sequence of tests which are grouped into neurocognitive domains,
such as memory and executive functions, among others [5]. This sequence, how-
ever, does not consider the specific characteristics of each child. Furthermore,
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undergoing all tests is arduous, time-consuming and expensive, leading to inter-
rupted evaluations and undetected neurocognitive deficiencies.

We propose to address this problem using machine learning. More specifi-
cally, our objective consists of predicting a personalized sequence of tests which
prioritizes tests associated to neurocognitive functions (outcomes) that are ex-
pected to be affected. We propose a new label ranking method [4], namely Label
Ranking per Group of Outcomes (LaRGO), that builds a multi-output random
forest per group of outcomes and combines the output of each model into a
ranking where worse outcomes are placed in higher positions5.

2 Experiments

We employ data obtained in a 2 years follow-up from the PEPaNIC-RCT study,
a multicenter, randomized and controlled trial [5]. It contains 23 features, re-
lated to demographics, socioeconomic status and PICU related features, and 23
neurocognitive outcomes measured from 786 previously hospitalized patients.
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Fig. 1: Precision@N using the 10 × 5-fold cross validation for different values of
N obtained using all comparison approaches.

As seen in Figure 1, all machine learning approaches yield better results,
where LaRGO is slightly superior. When compared to the current clinical prac-
tice (Experts), a more visible difference is perceived, as LaRGO achieved ap-
proximately 80% of precision, whereas the experts fluctuate around 60%.

3 Conclusion

We have proposed a label ranking approach whose results surpass the current
clinical practice, thus assisting physicians and other care providers in identify-
ing a personalized sequence of tests that children should undergo to identify
their worst neurocognitive deficiencies. In future work, we aim to incorporate
data from the 4 years follow-up study [2], and also develop a new label ranking
heuristic for the random forests, such as [1].

5 Our complete work is available at [3].
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