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Abstract. People want to rely on optimization algorithms for complex
decisions but verifying the optimality of the solutions can then become
a valid concern, particularly for critical decisions taken by non-experts
in optimization. We propose a proof system for shortest-path problems
with external constraints, which gives a set of logical rules to derive new
facts about feasible solutions. The key trait of the proposed proof system
is that it specifically includes high-level graph concepts within its reason-
ing steps (such as connectivity or path structure), in contrast to using
linear combinations of model constraints. Using our proof system, we
can provide a step-by-step, human-auditable explanation showing that
the path given by an external solver cannot be improved. We also pro-
pose a proof search procedure that specifically aims to find small proofs
of this form that proceeds similarly to A* search. We evaluate our proof
system on constrained shortest path instances generated from real-world
road networks and experimentally show that we may indeed derive more
interpretable proofs compared to an integer programming approach, in
some cases leading to much smaller proofs.
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This is an encore abstract of the homonymous paper [9] from AAAI-24.
Motivation. Combinatorial optimization has achieved remarkable success

in various practical domains; despite most of such problems being NP-complete,
many approaches can efficiently solve them in practice [7]. The downside of
this success is that the software for solving these problems is typically very
sophisticated, and testing such software is a non-trivial task [5].

One way to address this issue is to augment the software output with a
certificate – a logical derivation supporting the optimality/infeasibility claim.
One of the most celebrated examples of this idea is proof logging in Boolean SAT
solving, [1] and related approaches are known for mixed-integer programming [3]
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and pseudo-Boolean solving [6]. Proof systems of this type are generic enough to
support various application domains, however, the downside is that the produced
proofs are impenetrable for a human auditor.

Contribution. In this work, we address this concern for constrained shortest
path problems in which the path must satisfy some arbitrary set of conditions.
We design a proof system for the constrained shortest path problems that exploit
knowledge specific to the graph-theory domain, such as the removal of too-distant
vertices. This results in proofs that are easier to understand for humans, which
opens a new opportunity of validating the verdict of a solver by a human ob-
server. We also propose an algorithm for proof search and evaluate it against the
state-of-the-art implementation for a proof system [3] for integer programming,
with favorable results on instances with mandatory vertex constraints.

Results. We compare the proofs produced by our approach with the state-
of-the-art certified MIP approach [3] with respect to the proof width width, the
number of leaves in the proof tree, which translates to comparing the number of
cases introduced to support the optimality conclusion.
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Fig. 1. Distribution of the ratio of pro-
duced proof depth and baseline proof
depth.

For the evaluation, we used con-
strained shortest path problems with
two different types of side constraints:
(a) mandatory vertices that require
visiting some sets of vertices at least
once as defined in [4], and resource
constraints which impose a knapsack
capacity constraint on chosen edges as
defined in [8]. We generate the un-
derlying graphs by using the Open-
StreetMap data [2]. Our approach
has successfully constructed proofs
within a 60-second timeout on 96% of
mandatory-vertex instances and 92%
of resource-constrained instances, on
par with the baseline approach. Fig-
ure 1 summarizes the comparison of
proof widths for the baseline and for
our approach; the major highlight is
that our approach produces shorter
proofs for feasible mandatory-vertex
instances in 72.8% of the runs.

Resource constraint does not ex-
hibit improvement in the proof size, which is caused by the fact that the base-
line solves most (> 95%) of such instances with at most one level of branching.
Nonetheless, the proofs found by our approach are reasonably sized and could
be used for human inspection.
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