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Abstract. Many existing benchmarks of large (multimodal) language
models (LLMs) focus on measuring LLMs’ academic proficiency, often
with also an interest in comparing model performance with human test
takers’. While such benchmarks have proven key to the development of
LLMs, they suffer from several limitations, including questionable mea-
surement quality (e.g., Do they measure what they are supposed to in
a reliable way?), lack of quality assessment on the item level (e.g., Are
some items more important or difficult than others?) and unclear hu-
man population reference (e.g., To whom can the model be compared?).
In response to these challenges, we propose leveraging knowledge from
psychometrics - a field dedicated to the measurement of latent variables
like academic proficiency - into LLM benchmarking. We make three pri-
mary contributions. First, we introduce PATCH: a novel framework for
Psychometrics-AssisTed benCHmarking of LLMs. PATCH addresses
the aforementioned limitations, presenting a new direction for LLM re-
search. Second, we implement PATCH by measuring several LLMs’ pro-
ficiency in 8th grade mathematics against 56 human populations. We
show that adopting a psychometrics-based approach yields evaluation
outcomes that diverge from those based on current benchmarking prac-
tices. Third, we release 4 high-quality datasets to support measuring
and comparing LLM proficiency in grade school mathematics and sci-
ence with human populations.
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1 Introduction

Large language models (LLMs), including their multimodal variants like vision
language models, have witnessed significant advancements in recent years. These
models are typically evaluated on established benchmarks that assess their per-
formance across a diverse set of tasks such as commonsense reasoning [46,37,8],
coding [8,17] and academic proficiency. Academic proficiency, in particular, has
become a crucial part of LLM evaluation, as evidenced by the large number of re-
lated benchmarks like MMLU, ARC, GSM8K, DROP and MATH [18,9,10,13,18],
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as well as recent model technical reports’ increasing focus on them [31,17]. In
these benchmarks and reports, LLM performance is also often contrasted with
human performance.

Despite the success of existing benchmarks in advancing LLM research, they
have limitations. The first concern is measurement quality: Do these benchmarks
measure what they are supposed to in a reliable way? Many benchmarks are cre-
ated via crowd-sourced knowledge, by asking a convenience group of individuals
(e.g., crowd workers, paper authors) to create new test items (e.g., GSM8K,
DROP) or collecting them from (often undocumented) sources (e.g., websites,
textbooks, school exams) (e.g., MATH, MMLU, ARC). Without domain expert
input and rigorous testing of item quality, undesirable outcomes can occur, in-
cluding a mismatch between a benchmark and its claimed measurement goal,
missing information in a question, wrong answer keys, and low data annotation
agreement [30].1

Second, current benchmarks do not account for differences across test items,
such as item discriminativeness2 and difficulty (see Section 3.1). For example,
consider three items A (easy), B (hard) and C (hard). While answering correctly
to A and B would result in the same accuracy score as answering correctly to B
and C, the latter (i.e., answering correctly to more difficult items) would imply
higher proficiency. Furthermore, items that are too easy or too difficult (i.e., low
discriminativeness) will fail to differentiate models of different proficiency levels.
Thus, without accounting for item differences, benchmarking results, especially
model rankings, can be misleading.

Third, while many benchmarks compare LLMs against humans, the human
populations under comparison remain unclear [41]. For instance, human perfor-
mance in MATH is based on the authors; in MMLU, crowd workers; in MATH,
6 university students. Using such convenience samples (with little information
about sample characteristics), the measured human performance cannot be gen-
eralised to other human samples or populations beyond that specific sample.

To address these challenges, we propose leveraging insights from psychomet-
rics - a field dedicated to the measurement of latent variables like academic
proficiency - into LLM benchmarking processes. In particular, we draw on two
research areas in psychometrics: item response theory (see Section 3.1) and test
development (see Section 3.2 and 3.3). The former enables more accurate estima-
tion of academic proficiency, compared to common practice in LLM benchmarks
(e.g., means, percentages). It can also provide diagnostic information about the
quality of each test item. The latter, test development knowledge, can help to
build high quality LLM benchmarks where valid comparison to specific human
populations can be made.

Our paper makes three primary contributions. First, we present PATCH: a
novel framework for Psychometrics-AssisTed benCHmarking of LLMs, which

1 We avoid calling out specific datasets here, but a quick Internet search would reveal
many blogs reporting large percentages of errors in existing LLM benchmarks.

2 In psychometrics, the term “item discrimination” is used. However, given the ambi-
guity and negative connotation of “discrimination”, we adopt “discriminativeness”.
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addresses the aforementioned limitations of existing benchmarks. Second, we
demonstrate the implementation of PATCH by testing several LLMs’ proficiency
in 8th grade mathematics using the released test items and data from Trends
in International Mathematics and Science Study3 (TIMSS) 2011. We show em-
pirically that a psychometrics-based approach can lead to evaluation outcomes
that diverge from those obtained through conventional benchmarking practices
and that are more informative, underscoring the potential of psychometrics to
reshape the LLM benchmarking landscape. Third, we make our evaluation code
based on the PATCH framework available4, along with three other mathematics
and science datasets based on TIMSS 2011 and 20085.

2 Related Work

We are not the first to propose leveraging psychometrics for research on LLMs
and other areas in NLP. For instance, psychometric scales have been used to
examine the psychological profiles of LLMs such as personality traits and mo-
tivations [19,32,11]. The text in these scales can also be used to improve en-
coding and prediction of personality traits [21,43,45,14]. Psychometrics-based
reliability and validity tests have also been proposed or/and used to assess the
quality of NLP bias measures [12,44], text embeddings [15], political stance de-
tection [40], annotations [2], user representations [16], and general social science
constructs [4].

The most closely related work to our paper is the use of IRT models in NLP
for constructing more informative test datasets [23], comparison of existing evalu-
ation datasets and instances (e.g., difficulty, discriminativeness) [39,42,35,22,36],
as well as identification of difficult instances from training dynamics [25,24]. Our
work distinguishes itself from these papers in two aspects. First, we do not apply
IRT to existing LLM datasets/benchmarks. Instead, we introduce a framework
for benchmarking LLMs by leveraging both IRT and test development knowledge
from psychometrics. The goal of this framework is to generate new, high-quality
benchmarks for LLMs that warrant valid comparison with human populations.
Second, we demonstrate our framework with a mathematics proficiency test val-
idated on 56 human populations, and compare LLM performance with human
performance. To the best our knowledge, we are the first to apply psychometri-
cally validated (mathematics) proficiency tests to LLMs and make valid model
versus human comparison.

3 Preliminaries

3.1 Item Response Theory

Item response theory (IRT) refers to a family of mathematical models that de-
scribe the functional relationship between responses to a test item, the test item’s
3 http://timssandpirls.bc.edu/timss2015/encyclopedia/
4 https://github.com/fqixiang/patch_llm_benchmarking_with_psychometrics
5 https://zenodo.org/records/12531906

http://timssandpirls.bc.edu/timss2015/encyclopedia/
https://github.com/fqixiang/patch_llm_benchmarking_with_psychometrics
https://zenodo.org/records/12531906
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characteristics (e.g., item difficulty and discriminativeness) and test taker’s stand-
ing on the latent construct being measured (e.g., academic proficiency) [1]. Un-
like classical test theory and current LLM benchmarks, which focus on the total
or mean score of a test, IRT models takes into account the characteristics of
both the items and the individuals being assessed, offering advantages like item
quality diagnostics and more accurate estimation of test takers’ proficiency. As
such, IRT models have gained widespread adoption in various fields, including
education, psychology, and healthcare, where trustworthy measurement and as-
sessment are crucial.

We describe below three fundamental IRT models suitable for different types
of test items: the 3-parameter logistic (3PL) model for multiple choice items
scored as either incorrect or correct, the 2-parameter logistic (2PL) model for
open-ended response items scored as either incorrect or correct, as well as the
generalised partial credit (GPC) model for open-ended response items scored as
either incorrect, partially correct, or correct.

The 3PL model gives the probability that a test taker, whose proficiency is
characterised by the latent variable θ, will respond correctly to item i:

P (xi = 1 | θ, ai, bi, ci) = ci +
1− ci

1 + exp (−1.7 · ai · (θ − bi))
≡ Pi,1 (θ) (1)

where xi is the scored response to item i (1 if correct and 0 if incorrect); θ is
the proficiency of the test taker, where a higher value implies a greater proba-
bility of responding correctly; ai is the slope parameter of item i, characterising
its discriminativeness (i.e., how well the item can tell test takers with higher θ
from those with lower θ)6; bi is the location parameter of item i, characteris-
ing its difficulty; ci is the lower asymptote parameter of item i, reflecting the
chances of test takers with very low proficiency selecting the correct answer (i.e.,
guessing). Correspondingly, the probability of an incorrect response to item i is:
Pi,0 = P (xi = 0 | θk, ai, bi, ci) = 1−Pi,1 (θk). The 2PL model has the same form
as the 3PL model (Equation 1), except that the ci parameter is fixed at zero
(i.e., no guessing).

The GPC model [29] gives the probability that a test taker with proficiency
θ will have, for the ith item, a response xi that is scored in the lth of mi ordered
score categories:

P (xi = l | θ, ai, bi, di,1, · · · , di,mi−1) =
exp

(∑l
v=0 1.7 · ai · (θ − bi + di,v)

)
∑mi−1

g=0 exp
(∑g

v=0 1.7 · ai · (θ − bi + di,v)
)

≡ Pi,l (θ)
(2)

where mi is the number of response score categories for item i; xi is the
response score of item i between 0 and mi − 1 (e.g., 0, 1 and 2, for incorrect,
6 The number 1.7 is a scaling parameter to preserve historical interpretation of pa-

rameter ai on the normal ogive scale [6]. Also applies to 2PL and GPC models.
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partially correct, and correct responses); θ, ai, bi have the same interpretations
as in the 3PL and 2PL models; di,1 is the category l threshold parameter. Setting
di,0 = 0 and

∑mi−1
j=1 di,j = 0 resolves the indeterminacy of the model parameters.

Assuming conditional independence, the joint probability of a particular re-
sponse pattern x across a set of n items is given by:

P (x | θ, item parameters ) =

n∏
i=1

mi−1∏
l=0

Pi,l (θ)
ui,l (3)

where Pi,l (θ) is of the form specific to the type of item (i.e., 3PL, 2PL or
GPC); mi equals 2 for dichotomously scored items and 3 for polytomously scored
items; ui,l is an indicator defined as:

ui,l =

{
1 if response xi is in category l
0 otherwise

This function can be viewed as a likelihood function to be maximised by the item
parameters. With the estimated item parameters, θ can then be estimated [34].

3.2 Test Development in Psychometrics

Psychometrics LLM Benchmarking

1. Construct and test need specification. 1. (Construct and) test need specification.
2. Overall planning. 2. Overall planning.
3. Item development. 3. Dataset development.

a. Construct refinement. a. Existing item collection OR
b. Item generation. - Quality control.
c. Item review. b. Item creation and/or annotation.
d. Piloting of items. - Instructions.
e. Psychometric quality analysis. - (Pilot) study.

4. Test construction and specification. - Agreement analysis.
5. Implementation and testing. - Error analysis.
6. Psychometric quality analysis. 4. Dataset construction.
7. Test scoring and norming. 5. Model selection and evaluation.
8. Technical Manual. 6. Benchmark release.

Table 1. Contrasting test development between psychometrics and LLM
benchmarking.

Test development in psychometrics concerns the process of developing and
implementing a test according to psychometric principles [20]. Table 1 contrasts
psychometric test development (based on [20]) with common LLM benchmark-
ing procedures (based on [5,33]). What sets psychometric test development apart
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from typical LLM benchmark development is its focus on ensuring that the test
matches a well-defined construct via expert-driven item generation, rigorous pi-
lot testing, use of factor analysis and IRT models for item and test diagnostics,
establishment of scoring and normalisation standards, and testing on represen-
tative samples of intended test takers. The result of this elaborate process is
a high-quality test that can assess the construct of interest for the test takers
in a valid and reliable way. Many large-scale assessments, such as PISA (Pro-
gramme for International Student Assessment), TIMSS and PIRLS (Progress in
International Reading Literacy Study), conform to such a process.

We will use Proficiency in Grade School Mathematics (PGSM) as the con-
struct of interest to further illustrate this process. In Step 1, the construct of
interest and the test need are specified. For instance, how do we define PGSM?
Is it based on a specific curriculum? What does existing literature say? Which
education levels are we interested in? Is the test meant for comparison between
students within a school, or between schools within a country? Such questions
help us to clarify what we want to measure and how it can be measured.

In Step 2, we make necessary planning: How many test items? What kind of
item format (e.g., multiple choice, short answer questions)? Will the test scores
be standardised? How to assess the quality of test items? What are the desired
psychometric properties of the test items (e.g., how discriminative and difficult
should the items be?) and the test as a whole (e.g., internal consistency)? Will
we pilot any test item? Will the test be computer- or paper-based? To sample
test takers, what kind of sampling frames and strategies should we use?

In Step 3, we develop test items, which is an iterative procedure involving five
steps: (a) construct refinement, where we further clarify the definition of PGSM
(e.g., What content domains should be included: number, algebra, and/or prob-
ability theory? Is proficiency only about knowing, or also about applying and
reasoning?); (b) generate a pool of items with domain experts; (c) review the
items for obvious misfit, errors and biases; (d) pilot the items with a represen-
tative sample of target test takers; (e) with the responses from the pilot step,
we can assess the psychometric properties of the test items with IRT and fac-
tor analysis (e.g., item discriminativeness; item difficulty; factor structure7). We
iterate this procedure until we have a set of test items with acceptable psychome-
tric properties. Then, in Step 4, we construct the PGSM test by specifying, for
instance, which items to include (if not all), in which order, how many equivalent
test versions, and what scoring instructions to use.

In Step 5, the test gets implemented to the intended test takers, followed
by Step 6: another round of quality analysis. If any item displays low quality
characteristics (e.g., zero or negative discriminativeness), it will be left out of
the final scoring. In Step 7, responses of the test takers are scored for each
item, and the resulting item-level scores form the basis for estimating proficiency
scores using IRT or simpler procedures like (weighted) sums. It is typical to
also normalise the proficiency scores (e.g., with a mean of 500 and a standard

7 Factor structure refers to the correlational relationships between the test items for
measuring a construct of interest.
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deviation of 100) to facilitate interpretations and comparisons. Finally, in Step
8, a technical manual is compiled, detailing Step 1–7 and corresponding results,
to facilitate correct re-use of the response data, the test, as well as interpretation
of test scores, among other purposes.

3.3 LLM Benchmark Development

Developing LLM benchmarks follows a similar yet different process. Take GSM8K
[10] as an example. The authors started by specifying the need for a large, high
quality mathematics test at grade school level and of moderate difficulty for
LLMs (Step 1). The construct (i.e., PGSM) is not explicitly linked to any spe-
cific curriculum. Then, the overall planning is made (Step 2): The number of
items should be in the thousands; the items will be curated by crowd workers;
agreement and error analysis will be used to investigate the quality of the dataset;
GPT-3 will be used to benchmark the dataset and verify dataset difficulty.

In Step 3, where dataset development8 takes place, often one of the two
strategies is used: either collect items from existing datasets and other sources
and compile them into a new dataset, or, like in GSM8K, create own items from
scratch (with annotations). The latter is usually an iterative procedure consist-
ing of four parts: creating instructions (and possibly a user interface) for item
generation and/or annotation; conducting a (pilot) study to collect the items
and/or annotations; check annotator agreement; and assessing errors associated
with the items or annotations. This step is iterated until a sufficient number
of items and datasets are reached while meeting desired quality standards (e.g.,
high annotator agreement, low error rate). In total, GSM8K includes 8,500 items
with solutions, with identified annotator disagreements resolved and a less than
2% error rate.

In Step 4, the generated items form the final dataset, typically with training,
evaluation and testing partitions. In Step 5, selected LLMs are evaluated on
the dataset. Finally, in Step 6, the benchmark gets released, which typically
consists of the dataset as well as its documentation (often a research paper) and
benchmarking results.

Comparison with Psychometrics While sharing similarity with test development
in psychometrics, benchmark development for LLMs falls short on four aspects.
First, the construct of interest is often under-specified, leading to a mismatch
between the intended construct and what the dataset actually measures. Take
GSM8K as an example: While the dataset is intended to measure proficiency in
grade school mathematics, the target grade level(s) are unclear and it only fo-
cuses on one content domain (algebra), missing other relevant ones like geometry
and data. This is likely the result of not using established mathematics curricula
and domain experts to develop test items.
8 Note that we use the term “dataset development” here, contrasting “item develop-

ment” in psychometrics, because of LLM benchmarks’ typical emphasis on large and
multiple datasets rather than concrete test items.
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Second, despite researchers’ interest in comparing LLM performance with
human test takers (e.g., the GSM8K paper claims that “a bright middle school
student should be able to solve every problem”), such comparisons usually can-
not be made because the test has not been designed with humans in mind or
validated on any representative samples of the test’s target user populations.

Third, besides agreement and error analysis, LLM benchmarks can benefit
from psychometric analysis of test items, (i.e., checking item discriminativeness
and difficulty, as well as the factor structure of the items). While this is not yet
the norm, there have been promising attempts (see Section 2).

Lastly, the released benchmark often does not contain sufficient details about
the process of benchmark creation. For instance, the GSM8K paper does not
report instructions for item generation and annotation, results of the pilot study,
agreement statistics, or annotator characteristics, all of which are important for
external researchers to independently validate the quality of the benchmark.

4 PATCH: Psychometrics-AssisTed benCHmarking of
LLMs

Figure 1 illustrates PATCH, our conceptualisation of a Psychometrics-AssisTed
framework for benCHmarking LLMs.9 Under PATCH, the first step is to define
the construct of interest (e.g., proficiency in 8th grade mathematics). The second
step is to find an existing validated psychometric test measuring this property;
alternatively, a test can be developed from scratch, following the procedures
described in Section 3.2, which likely requires collaboration with experienced
psychometricians. The term “validated” means that the test has been tested on
a representative sample of the target population of (human) test takers and fulfils
psychometric quality requirements (e.g., sufficiently many discriminative items
well distributed across different difficulty levels; showing high reliability (e.g.,
high internal consistency) and validity (e.g., the test’s factor structure matches
the construct definition)).

Next (Step 3→4), we use the items from the validated psychometric test to
construct prompts for the LLMs under evaluation and then sample responses.
A response typically consists of a task description, an explanation and an an-
swer (key). Therefore, in Step 4→5, we extract the answer (key) for each item’s
response, then grade it to obtain item scores (Step 5→6).

For Step 2→7, the responses of human test takers (and of LLMs, if a sufficient
number of LLMs are involved) can be used to estimate IRT item parameters
and subsequently the latent proficiency scores for each test taker (human or
LLM) with uncertainty estimates. Multiple IRT models are often used because
of the adoption of different types of test items. These latent proficiency scores
are typically standardised z-scores (i.e., mean of 0 and standard deviation of
1), which can optionally go through further normalisation (e.g., re-scaling to a

9 PATCH is partly inspired by the Hexagon Framework of scientific measurements
proposed by [27].
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LLM

1. construct under measurement
(e.g., 8th grade math proficiency)

4. sampled
responses 6. item scores5. extracted

responses

7. IRT model(s)2. validated
psychometric test3. prompts test 

items
human 

responses

8. proficiency
estimates

scoringextraction

norm

Fig. 1. PATCH: A Psychometrics-AssisTed framework for benCHmarking
LLMs.

mean of 500 and a standard deviation of 100) (Step 6→7). These final proficiency
scores enable comparison with other models and populations.

At the heart of PATCH lies a validated psychometric test, which not only
provides the basis for accurate measurement of the capability of interest but
also facilitates comparison between LLMs and human test takers. Unfortunately,
developing such a test can be a long and expensive process; utilising existing
tests can be a shortcut, which, however, should satisfy three conditions: clear
human population reference; test items available; human responses and/or item
parameter estimates available. The second and third are in practice difficult
to meet, as many test institutes do not make their test items public due to
commercial interests (e.g., SAT) or the need to measure trends over time (e.g.,
PISA). Collaboration with test institutes would alleviate this problem.

To the best of our knowledge, among academic proficiency tests, only TIMSS
and PIRLS tests from certain years can be readily used for PATCH-based LLM
benchmarking. TIMSS measures proficiency in grade school mathematics and
science (4th grade, 8th grade, and final year of secondary school), while PIRLS
assesses reading comprehension in 9/10-year-olds. Both TIMSS and PIRLS are
administered in a large number of countries and regions with representative stu-
dent samples, enabling country/region-level comparisons. In the following sec-
tion, we demonstrate PATCH by measuring several LLMs’ proficiency in 8th
grade mathematics, using the latest available data from TIMSS 2011.

5 Demonstration: Measuring LLM Proficiency in 8th
Grade Mathematics

5.1 Data: TIMSS 2011 8th Grade Mathematics

56 countries/regions participated in TIMSS 2011, with typically a random sam-
ple of about 150 schools in each country/region and a random sample of about
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4,000 students from these schools. These sample sizes are determined on the
basis of a ≤ .035 standard error for each country’s mean proficiency estimate.
The use of random sampling makes unbiased proficiency estimates possible at
the population level. TIMSS 2011 has released a publicly available database10,
of which three components are relevant to our study:

Test Items The TIMSS 2011 study has released 88 mathematics test items, 48
of which are multiple choice, 30 open-ended items scored as either incorrect
or correct, and 10 open-ended items scored as either incorrect, partially cor-
rect, or correct. These items assess four content domains representative of 8th
grade mathematics curriculum (agreed upon by experts from participating coun-
tries/regions): number, algebra, geometry, data and chance. Within each domain,
items are designed to cover various subtopics (e.g., decimals, functions, patterns)
and three cognitive domains: knowing, applying and reasoning. These test items
are only available in a PDF file that can be downloaded from the NCES website,
which includes also scoring instructions.11 To extract them into a format com-
patible with LLMs, we used OCR tools to extract as much textual information
as possible, converted mathematical objects (e.g., numbers, symbols, equations,
tables) into LaTeX format (following earlier benchmarks like MATH) [18] and
figures into JPEG format. See Appendix A.1 for examples. We have released
this LLM-compatible version of test items, as well as an eighth grade science
test dataset from TIMSS 2011, an advanced secondary school mathematics test
dataset from TIMSS 2008, and an advanced secondary school physics test dataset
from TIMSS 2008.

IRT and Item Parameters The dataset also specifies the IRT model used for
each test item and contains the item parameter estimates (e.g., discriminative-
ness, difficulty), which we use to reconstruct the final IRT model for proficiency
estimation.

Student Responses and Proficiency Estimates Lastly, responses of the sampled
students to each test item and their proficiency estimates are also available,
allowing us to construct proficiency score distributions for each country/region.

5.2 LLMs: GPT-4, Gemini-Pro and Qwen with Vision Capability

Considering that more than 1/3 of the test items contain visual elements, we
selected four competitive vision language models: GPT-4 with Vision (GPT-4V),
Gemini-Pro-Vision, as well as the open-source Qwen-VL-Plus and Qwen-VL-
Max [3]. There are more LLMs with vision capability. However, our goal is to
showcase PATCH, not to benchmark as many LLMs as possible.

A major concern in using these LLMs is data contamination, which is diffi-
culty to check due to inaccessible (information about) training data. However,

10 https://timssandpirls.bc.edu/timss2011/international-database.html
11 https://nces.ed.gov/timss/pdf/TIMSS2011_G8_Math.pdf

https://timssandpirls.bc.edu/timss2011/international-database.html
https://nces.ed.gov/timss/pdf/TIMSS2011_G8_Math.pdf
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as our focus is on demonstrating the PATCH framework, data contamination is
less worrying. Furthermore, data contamination is still unlikely for four reasons.
First, these test items are copyrighted, forbidding commercial use. Second, the
test items are hard to extract from the source PDF. Third, to the best of our
knowledge, these test items do not exist in current LLM mathematics bench-
marks. Fourth, we prompted the selected LLMs to explain or provide solutions
to the test items’ IDs (available in the source PDF). All failed to recognise these
specific test IDs.

5.3 Prompts and Temperature

We design two separate prompts for each test item: the system message and the
user message. We design the system message according to the prompt engineering
guide by OpenAI, utilising chain-of-thought and step-by-step instructions on how
to respond to the user message (i.e., with a classification of question type, an
explanation and an answer (key)).12 The system message is the same for all
test items (see Appendix A.2). Furthermore, to account for LLMs’ sensitivity
to slight variations in prompts [38,26], we generate 10 additional variants of the
system prompt with slight perturbations (e.g., lowercase a heading, vary the
order of unordered bullet points).

The user message is item-specific, containing both the item’s textual descrip-
tion and the associated image(s) in base 64 encoded format. See Appendix A.1
for examples.13

Following [31]’s technical report, we set the temperature parameter at 0.3
for multiple choice items and 0.6 for the others. See Appendix B for example
responses.

5.4 Scoring and Proficiency Estimation

We manually scored the sampled responses from the LLMs following the offi-
cial scoring rubrics of TIMSS 2011. Then, for multiple choice items, we apply
the 3PL model (Equation 1); for open-ended items, we apply the GPC model
(Equation 2) if partially correct response is admissible, otherwise the 2PL model.
We use maximum likelihood to obtain unbiased estimates of model proficiency
scores (θ) with the mirt package in R [7]. This results in 11 θ estimates per
model corresponding to 11 system message variants. We then use inverse vari-
ance weighting [28] to combine these estimates. Inverse variance weighting gives
more weight to estimates that are more precise (i.e., having lower variance) and
less weight to those that are less precise (i.e., having higher variance). This way,
we obtain a more accurate overall θ estimate and its 95% confidence interval
(CI) for each model.

12 https://platform.openai.com/docs/guides/prompt-engineering
13 We are aware of other prompt engineering techniques like few-shot prompting and

self-consistency. We did not experiment with them, as our focus is on demonstrating
PATCH.

https://platform.openai.com/docs/guides/prompt-engineering
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5.5 Results

Qwen−VL−Plus
Australia

Canada, Alberta
United States

England
Finland

Canada, Ontario
Hungary

Israel
Canada, Quebec

Gemini−Pro−Vision
Qwen−VL−Max

Russian Federation
Japan

Hong Kong SAR
Singapore

Chinese Taipei
Korea,Rep.of

GPT−4V

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A

Qwen−VL−Plus
Australia
Hungary

Canada, Alberta
England

United States
Canada, Ontario

Finland
Israel

Canada, Quebec
Russian Federation
Gemini−Pro−Vision

Qwen−VL−Max
Japan

Hong Kong SAR
Chinese Taipei

Singapore
Korea,Rep.of

GPT−4V

200 300 400 500 600 700 800

B

Fig. 2. Distribution of proficiency estimates for GPT-4V, Gemini-Vision-
Pro, Qwen-VL-Plus, Qwen-VL-Max and selected participating coun-
tries/regions of the TIMSS 2011 8th grade mathematics test. Left figure (A)
shows the proficiency estimates based on the percentages of correct responses. Right
figure (B) shows the IRT-based proficiency estimates. The middle vertical line in each
box plot represents the weighted mean proficiency score, with the error bars indicating
its 95% confidence interval. The borders of each box indicate the range of the middle
50% of all values, with the two whiskers indicating the 5th and 95th percentiles.

Figure 2 shows the proficiency score distribution and ranking of 15 selected
participating countries and regions, GPT-4V and Gemini-Pro-Vision. Only 15
countries are shown here to save space. The complete figures can be found in
Appendix C. The proficiency scores (x-axis) on the left panel are percentages of
correct responses, which is the default approach in current LLM benchmarking;
the proficiency estimates on the right panel are based on IRT. We make three
observations. First, regardless of the method of proficiency estimation, GPT-4V
has the overall best performance relative to Gemini-Pro-Vision and the average
proficiency of 8th grade students of each participating country/region. Second,
the method of proficiency estimation affects the ranking results. For instance,
while Chinese Taipei is ranked 3rd on the left, it is ranked 4th on the right;
Gemini-Pro-Vision is ranked 8th on the left, but ranked 7th on the right. Sim-
ilarly, while Hungary is ranked 11th on the left, it drops to the 16th place on
the right. Third, the method of proficiency estimation affects the estimated 95%
CIs, which are usually wider when IRT is used (as it accounts for both item and
test taker variances). Notably, while on the left panel the CI of GPT-4V does not
overlap with the second best, South Korea, indicating a statistically significant
difference, they overlap on the right panel, suggesting otherwise. This finding
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shows that the adoption of PATCH is likely going to make a difference to LLM
benchmark results.

6 Conclusion

In this paper, we propose PATCH, a psychometrics-inspired framework to ad-
dress current limitations of LLM benchmarks, including questionable measure-
ment quality, lack of quality assessment on the item level and unwarranted com-
parison between humans and LLMs. We demonstrate PATCH with an 8th grade
mathematics proficiency test, where PATCH yields evaluation outcomes that
diverge from those based on existing benchmarking practices. This underscores
the potential of PATCH to reshape the LLM benchmarking landscape.

7 Limitations

Our paper has the following limitations, among others. First, PATCH requires
validated tests, which can be resource-intensive if tests need to be developed
from scratch. However, this also opens up opportunities for collaboration be-
tween LLM researchers, psychometricians and test institutes. Second, the valid-
ity, reliability, and fairness of using tests validated solely on humans for LLM
benchmarking are debatable due to possibly differing notions of proficiency and
cognitive processes between LLMs and humans. Nonetheless, such tests are still
better than non-validated benchmarks, particularly for comparison of model and
human performance. Advancing LLM benchmarking further requires tests vali-
dated on LLMs (and humans for model-human comparisons), necessitating the-
oretical work on LLM-specific constructs and the development of LLM-specific
IRT models and testing procedures. Third, our experiment only includes two
proprietary LLMs and one proficiency test. We consider this sufficient for demon-
strating PATCH, but not enough if the goal is to benchmark as many LLMs as
possible across different tests.
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