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Abstract. Factor-based investment strategies provide a valuable ap-
proach for investors to allocate their resources effectively. However, stock
markets are influenced by investor sentiment, leading to data scarcity
relative to the vast universe of possible financial factors and their inter-
actions. This paper presents an innovative study using AI-based tech-
niques that optimizes and analyzes a well-known investment strategy
called the Magic Formula (MF). To efficiently test the multitude of MF
variants the techniques generate, we leverage on Qrumble, our recently
developed Python framework for factor-based investment strategies. We
employ Grid Search and Tabu Search algorithms to explore the space
of MF variants and analyze how MF parameters and financial factors
(used in ranking stocks) influence performance outcomes. Additionally,
we conduct exploratory data analysis using the multiSOM, an advanced
Self-Organizing Map, to identify the key factors driving return, risk, and
risk-adjusted return. Our results reveal that factors used in ranking sig-
nificantly outperform other MF parameters when optimizing the MF.
Results from the exploratory factor analysis reveal interesting invest-
ment patterns prevalent in Europe during the sample period. Results,
showcased here for the MF, shed light on the primary factors impact-
ing diverse profiles for successful factor-based investment strategies. We
believe our research provides a data-driven analysis that can offer valu-
able insights for refining investment strategies in the studied European
financial sample data and beyond.

Keywords: Factor-based investment strategy · Local search optimiza-
tion · Factor analysis · Self-organizing map.

1 Introduction

Factor-based investment strategies [2] drive numerous major investment funds
worldwide. These investment strategies, some authors call factor-based, rank
companies using specific criteria (e.g., a ranking formula) that incorporate finan-
cial factors derived from technical or fundamental analysis [19, 23]. They then
invest in a number of top-ranked companies for medium to long-term periods.
This process is repeated at set intervals over several years. However, analyz-
ing the parameters—specifically which financial factors to use—that drive the
performance of a factor-based investment strategy is challenging.
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This study presents AI-based techniques to optimize and analyze factor-based
investment strategies. For demonstration, we apply these techniques to the Magic
Formula (MF) [11]—a renowned factor-based investment strategy developed by
acclaimed investor and author Joel Greenblatt. A six-year financial sample con-
sisting of the largest 600 European companies is used as a testbed, onto which
more than 2,500 MF variants are run seeking to optimize key performance met-
rics of the MF.

Two major contributions result from the application of our AI-based tech-
niques to the MF. The first contribution involves categorizing MF variants into
two groups: those that modify the number of stocks being selected while main-
taining the original ranking criteria, and those that keep the original stock num-
bers but alter the ranking criteria. This categorization and subsequent group
analysis empirically demonstrates that modifying stock numbers alone improves
MF performance only to a certain extent. A more effective approach, yielding sig-
nificant performance improvements, involves adding more factors to the ranking
formula and combining them in specific ways. The second contribution presents a
method for effective factor analysis of factor-based investment strategies, train-
ing a Self-Organizing Map (SOM) [16] and identify crucial factors among the
myriad of potential ranking formulas in the second category. The exploratory
data analysis of the trained SOM reveals the key factors driving the metrics
investors care most about: return, risk, and risk-adjusted return. While we fo-
cus on the MF as our target factor-based investment strategy for optimization
and exploratory factor analysis, our AI-based techniques can be applied to other
factor-based investment strategies beyond the MF.

2 Magic Formula

The Magic Formula (MF) [11] uses as the stock universe the largest 3,500 US
stocks by market cap., excluding the financials and utilities sectors. From this
universe, 30 stocks are selected by a 2-factor ranking system into an equal-weight
portfolio and invested for one year. After one year, the portfolio is rebalanced:
stocks currently in the portfolio are sold and 30 new stocks are selected for the
equal-weight portfolio and invested again for one year, using the same ranking
system. This process is repeated annually. Any gains or losses from the previous
portfolio are reinvested into the next. The 30 stocks selected in each rebalance
are those that score the highest according to the following ranking formula:

score = ROC〈+〉 + EarningsYield〈+〉. (1)

In this formula, stocks from the universe are scored using a 2-factor ranking
system based on ROC and EarningsYield. ROC is the Return on Capital, which
is the ratio between EBIT (Earnings Before Interest and Taxes) and Capital
Employed, and EarningsYield is the ratio between EBIT and Enterprise Value.
To calculate the score for a stock i (i ∈ {1, . . . , U}, where U is the size of the
stock universe), the following steps are applied:
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1. Rank all U stocks based on their ROC ratios in ascending order: assign 1
(rank 1) to the stock with the lowest ROC, 2 to the stock with the 2nd lowest
ROC, and so on, finally assigning U to the stock with the highest ROC; let
iroc be stock i’s rank based on ROC;

2. Rank all U stocks based on their EarningsYield ratios in ascending order,
using the same method; let iey be stock i’s rank based on EarningsYield;

3. Sum both ranks: iroc + iey , to yield a score for stock i (2 ≤ score ≤ 2U);
4. Repeat to get the score of every stock in the universe;
5. Select the top 30 stocks with the highest scores for investment.

The plus sign 〈+〉 towering each factor indicates that ranking is done in ascending
order, as used above. Conversely, if there was a term like ROC〈−〉 in the ranking
formula, it would mean that stocks would be ranked by ROC in descending order.
This reverses the above assignment, assigning 1 to the stock with the highest
ROC, 2 to the stock with the 2nd highest ROC, and so on, finally assigning U
to the stock with the lowest ROC.

To expand the ranking formula (1) beyond ROC and EarningsYield, we can
include any sequence of k distinct factors:

score = F
〈+/−〉
1 + F

〈+/−〉
2 + . . .+ F

〈+/−〉
k . (2)

Here, k can be any number between 1 and K, where K represents the total
number of factors under consideration for inclusion in the formula. Each of the
k factors is assigned either an ascending or descending sorting order, based on
whether higher or lower factor values should be given more weight in ranking
the stocks.

3 Similar works employing the SOM for financial analysis

In previous research [7], the Self-Organizing Map (SOM) is used to analyze fail-
ures of small and medium-sized enterprises, providing insights without the need
for complex financial manipulations. Additionally, the SOM is employed in risk
analysis [5, 7], showcasing its potential for identifying companies likely to experi-
ence share price decreases within a year. Noteworthy applications of the SOM in
finance include early studies by [7], where large datasets comprising 30 emerging
markets are compressed into two-dimensional maps. These maps facilitate the
analysis of investment opportunities and similarities between markets, aiding in
asset allocation and benchmarking. However, the focus was primarily on rela-
tive volatility among emerging markets. In a more recent study [5], the SOM
is used to cluster and visualize the temporal progression of financial indicators,
assisting in predicting company development and bankruptcy risk. The dataset
contained 29 financial ratios of over 110,000 companies from 2003 to 2006, with
subsequent bankruptcy labeling. This study validates the SOM’s effectiveness
in financial analysis, especially in assessing bankruptcy risk. In another recent
work [3], the authors employ the SOM for fundamental analysis of companies,
uncovering new correlations among companies with similar fundamentals. The
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present work builds upon these foundations, extending the analysis to the im-
portance of the distinct financial factors for investment strategy optimization
and refinement.

4 Methodology

Fig. 1 outlines the methodology with the help of a diagram. In this diagram,
data are represented by ovals and running code by rectangles. These are colored
according to their functional roles: yellow for investment-related duties, pink for
carrying out systematic search and green for analyzing and visualizing results.
Two framed, miniaturized plots represent the results—essentially thumbnails
of the full-sized plots included in the paper. Diagram components are briefly
addressed below. Specific components are described in more detail in subsequent
sections.

EU
sample

Qrumble

input parameters:
• date=jan2015 • horizon=5y
• rebalance=1y • sample=EU sample
• universe=STOXX 600
• screening=sectors • ranking=ranking
formula • top=top_mf • equal-weight
• fee=0.15% • Rf=-0.6% • alpha=0.05

MF variant
(MFV function)

input parameters:
• sectors
• top_mf
• ranking formula

run call

performance metrics

Grid Search

grid points:
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cials+nonutilities,
nonfinancials, nonutili-
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Fig. 1: Methodology overview.

MF variant is generated by breaking down the original MF into three param-
eters, as follows: ‘sectors’, ‘top_mf’ and ‘ranking formula’, highlighted in red
throughout the diagram. The first two parameters affect the number of stocks
chosen: ‘sectors’ expands the stock universe for selection, while ‘top_mf’ adjusts
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the number of stocks selected for investment. The ‘ranking formula’ modifies the
criteria used to select stocks, incorporating additional factors beyond the two
originally used.

The original MF operates based on fixed values of these parameters: ‘sec-
tors’ (ordinal) is set to nonfinancials+nonutilities, ‘top_mf’ (number) is set
to 30 and the ‘ranking formula’ (vector-encoded, described shortly) is defined
by Formula (1). In this paper, we allowed parameters to vary, resulting in new
MF-based investment strategies, which we refer to as MF variants. Each vari-
ant is identified by a unique combination of these three parameters. Except for
any differences in the parameters, all other characteristics of the investment re-
main the same as the original MF. Each MF variant was evaluated in the same
EU sample using Qrumble.

Qrumble is our Python framework for streamlined factor-based investing.3 Its
capacity to run a multitude of factor-based investment strategies [1] by adjusting
a few input parameters, as illustrated in the diagram, made it an indispensable
tool—without which this study would not have been possible. When tasked
with running an investment strategy over the supplied sample, Qrumble calcu-
lates and delivers the corresponding performance metrics. Table 1 lists the eight
performance metrics used by Qrumble to evaluate the MF variants in this study.
For a detailed explanation of these metrics and their calculations, please refer
to [12, 14], as well as the relevant section in Qrumble’s documentation.

Table 1: Performance metrics used.
Metric Brief description
annualized Total return of the investment, annualized.

mean Mean of the daily returns of the investment, scaled to an annual basis.

std Standard deviation of the daily returns of the investment, scaled to an annual basis.

sharpe Sharpe ratio of the investment, calculated on an annual basis, with −0.6% as the
risk-free rate.

alpha CAPM’s α coefficient of the investment, with the STOXX 600 as the market refer-
ence.

beta CAPM’s β coefficient of the investment.

var Value at Risk (VaR) of the investment, scaled to an annual basis, with a confidence
level (α) of 0.05.

tvar Tail Value at Risk (TVaR) of the investment, scaled to an annual basis, with the
above confidence level.

mfv function is referred to as the evaluation (for Grid Search) or fitness function
(for Tabu Search) in the three-part process of: 1) defining a specific MF variant

3Qrumble: A Python framework for streamlined factor-based investing, documented
in https://bit.ly/Qrumble.
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using a unique combination of three parameters, 2) running this variant over the
EU sample, and 3) obtaining its performance metrics. This function enables a
fair comparison of MF variants as they undergo systematic examination through
one of the search methods.

EU sample is the European financial sample used to run the MF variants with
Qrumble. It is based on the STOXX 600 index4. The original MF and its vari-
ants have been repurposed for this index, shifting the universe from the 3,500
largest US stocks to European companies. While the stock universe changed, we
maintained all other characteristics of the MF, including the rebalancing period,
equal-weight portfolios, fees and so forth. The financial sample covers the 2014–
2019 period in Europe, and contains market data (daily) and fundamental data
(half-yearly) for the companies listed in the STOXX 600 index across this 6-year
period.

4.1 Grid Search

Grid Search [9] was used to explore 400 different MF variants of the first two pa-
rameters: ‘sectors’ and ‘top_mf’, while keeping the ‘ranking formula’ constant
as per (1). These two parameters allow for defining varying amounts of stock
that are invested by the MF-based strategy (MF variant), while keeping the cri-
teria on how to select those stocks the same as in the original MF. The ‘sectors’
parameter (an ordinal variable), was allowed to vary between the more restricted
universe of nonfinancials+nonutilities (like in the original MF, of around 400
European stocks on each rebalance, on average) to increasingly larger universe
sizes of: nonfinancials (around 460 stocks), nonutilities (around 540 stocks) and
all (around 600 stocks), respectively. The ‘top_mf’ parameter (a numeric vari-
able), was permitted to vary within the range {1, . . . , 100}, defining the number
of top stocks invested in at each rebalance.

Grid Search went through 400 grid points formed by pairwise combinations
of the two parameters. Each grid point corresponded to a unique MF vari-
ant, whose performance metrics were evaluated by the mfv function (Fig. 1).
This function invokes Qrumble to execute the specific factor-based investment
strategy over the common EU sample. Upon completion of Grid Search, all
explored grid points (MF variants) were collected as datapoints into the gs-
dataset. This dataset has 400 instances with 2+8 features having the following
tabular structure: sectors top_mf annualized mean std sharpe alpha beta var tvar .
The first 2 features are the parameters that define one particular MF variant
(out of 400), while the last 8 features are its performance metrics obtained from
the sample.

4.2 Tabu Search

Tabu Search [10] was used to explore different variations of the ‘ranking formula’
while keeping the other two parameters, ‘sectors’ and ‘top_mf’, at their original

4https://qontigo.com/index/SXXGR/
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values. Tabu Search was used instead of Grid Search due to the potentially vast
search space involved, which grows exponentially with the number of factors K
in (2). We conducted three distinct Tabu Searches, each optimizing a different
performance metric through the fitness function (MFV function). To align with
investor preferences, we aimed to optimize MF variants based on: 1) return,
represented by the ‘annualized’ metric; 2) risk, represented by the ‘var’ metric
(Value at Risk); and 3) risk-adjusted return, expressed by the ‘sharpe’ metric
(Sharpe ratio). All metrics were annualized. For the actual implementation of
Tabu Search, we reused the algorithm from [4]. Each Tabu Search started from
the same seed (the MF itself), ran for 100 iterations (T=100), had a tabu size
or tenure of 40 (τ=40) and used the same 11-factor base to pick factors for
the ranking formulas (2). Parameter m is the performance metric that Tabu
Search aims to optimize via three different calls to the same fitness function
(mfv function in Fig. 1).

To explore different combinations of the ranking formulas through (2), we
considered a total of eleven distinct factors (K=11). In addition to the two orig-
inal MF factors used in ranking stocks—ROC and EarningsYield—we included
nine more factors from other equally renowned factor-based investment strate-
gies. While we could have included even more factors from other sources, we
chose to limit our selection to 11 to demonstrate the techniques employed. Yield
was taken from the “Dogs of the Dow” strategy [20], RS(6m) from ‘Buying Win-
ners and Selling Losers” strategy [13], and the remaining factors came from the
“F-Score” strategy [21]. Table 2 lists all 11 factors, providing a brief description
and their respective sources.

Tabu Search technicalities To perform a Tabu Search on ranking formulas across
11 factors based on Formula (2), we encoded each specific ranking formula as an
11-dimensional vector. Each dimension can have one of three values: {−1, 0, 1}. If
factor Fi (i ∈ {1, . . . , 11}) is present in a specific ranking formula, the ith dimen-
sion of its vector is set to −1 if the factor is in descending order (F 〈−〉i ), or 1 if it
is in ascending order (F 〈+〉i ). If factor Fi is absent in a specific ranking formula,
the ith dimension is set to 0. This encoding ensures a unique mapping between a
ranking formula with k factors, each with a specific ascending/descending order,
and its 11-dimensional vector representation. With 11 factors, the number of
possible ranking formula combinations is 177,146 (i.e., 311 − 1). We subtract 1
because the all-zero vector is invalid (k must be at least 1). When doing lo-
cal search-related tasks, the vector form of the ranking formula is used. When
calling the fitness function, mfv, the ranking formula itself is converted back
into (2). Starting with the seed (MF itself) in vector form, neighbors of any
vector solution s are found by flipping a single value on one of its dimensions.
The flip function performs this task: it changes the current value of s at dimen-
sion i to another value within the permitted range {−1, 0, 1}. The flip function
must take care to not produce an all-zero vector solution as result. This pro-
duces 11 neighbor solutions in every iteration, from a given solution s. From
this set of neighbors, any solutions that have since been designated as taboo
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Table 2: Financial factors used in expanding the ranking formula of MF.
Factor Brief description

ROC†
Return on Capital is used to measure the rate of return a business is making
on its total capital. It is calculated as EBIT divided by Capital Employed
(ttm+).

EarningsYield† A measure of how much a company earns relative to its Enterprise Value. It
is defined as EBIT divided by Enterprise Value (ttm).

Yield* Stock’s annual dividend payments to shareholders expressed as a percentage
of the stock’s current price.

RS(6m)††
The 6m Relative Strength measures a stock’s price change over the last
6 months relative to the price change of a market index. It shows the rela-
tive outperformance or underperformance of the stock in that timeframe.

ROA‡
Return on Assets is a measure of how efficiently a company is using its assets
to generate income. It is calculated by dividing a company’s annual earnings
by its average total assets (ttm).

∆ROA‡ Difference between current and last year’s ROA (ttm).

AccrualRatio‡
A way to identify firms where Non-Cash or Accrual-Derived Earnings make
up a significant proportion of Total Earnings. It is calculated as (Net Income
- Free Cash Flow) divided by Total Assets (ttm).

∆LTDetb-to-Assets‡ Difference between current and last year’s Long Term Debt to Assets ratio.
LTDetb-to-Assets is a measure of the level of the company’s leverage.

∆CurrentRatio‡
Difference between current and last year’s Current Ratio. Current Ratio is a
measure of the level of liquidity of a company. It is calculated as Total Current
Assets divided by Total Current Liabilities (ttm).

∆OpMgn‡

Difference between current and last year’s Operating Profit Margin. OpMgn is
a measure of how much income a company has left after paying its Operating
Costs such as Rent and Salaries. It is calculated as Operating Profit divided
by Revenue (ttm).

∆AssetTurnover‡
Difference between current and last year’s Asset Turnover ratio. Asset
Turnover is a measure of how effectively a company is using its Assets to
generate Revenue. It is calculated as Revenue divided by Total Assets (ttm).

† Magic Formula * Dogs of the Dow †† Buying Winners and Selling Losers ‡ F-Score
+ trailing twelve months (ttm)

must be excluded. The Tabu Search we ran implements a Short Term Memory
tabu list (STM) to record the last τ solutions iterated as taboo (τ is the tenure
parameter).

After completing the three Tabu Searches, all solutions (MF variants) whose
performance metrics were made available through the fitness function, were col-
lected as datapoints into the tbs-dataset. This dataset has 2574 instances with
11+8 features, with the following tabular structure: Yield ROC EarningsYield
RS(6m) ROA ∆ROA AccrualRatio ∆LTDebt-to-Assets ∆CurrentRatio ∆OpMgn
∆AssetTurnover annualized mean std sharpe alpha beta var tvar . The first 11 fea-
tures represent the ranking formula of one particular MF variant (out of 2199)5,
as a 11-dimensional vector. Each feature can have one of {−1, 0, 1} values. The

5Some datapoints in the tbs-dataset are duplicated due to the way the three Tabu
Searches were run, all of which started from the original MF as seed. Consequently,
the MF itself and its near variants in the search space can appear repeated up to three
times.
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last 8 features correspond to its performance metrics obtained from the sample.
In total, only about 1.24% of the entire search space had been explored. How-
ever, the small portion of ranking formulas uncovered by Tabu Search proved to
be exceptionally high-performing, as discussed in Section 5.1.

4.3 multiSOM

The multiSOM [17, 18], a Self-Organizing Map (SOM) package, was used to
carry out exploratory factor analysis on the normalized tbs-dataset. This package
retains the basic properties of the original Kohonen’s SOM [16] while improving
convergence in an interactive way. It also serves as an interactive visualization
tool [18] during SOM training. However, for this particular study, we did not
use such interactive capabilities.

Instead, we incorporated into the multiSOM the ability of using certain fea-
tures (dimensions) to be a especial kind of label. These labeled features are unique
in that they are not utilized in calculating the distances between the SOM’s neu-
rons (prototypes) and the input vectors during the training process, which are
secured by the regular features. However, they still adapt and converge towards
the input vectors, effectively representing the clustered feature in the map once
training is complete. In [15], a similar approach is taken for what the authors
call the dummy pre-crisis attribute. Such approach ensures that the SOM re-
mains focused on the primary features used for clustering while still capturing
and displaying important categorical information that can be used to interpret
the results effectively.

In this study, we treated the 8 performance metrics as regular features and
the 11 encoded factors as labeled features. Before training, we applied min-max
normalization to the tbs-dataset, scaling every feature to the [0, 1] interval. We
chose a 40x20 neuron lattice for our map and fed the normalized tbs-dataset
into the multiSOM for training. After approximately 100,000 training iterations
(where one iteration processes a single datapoint), component planes for all
19 features were generated. We analyze these planes in Section 5.2.

It is crucial to understand that since only the 8 performance metrics were
used to compute the SOM’s distances, the trained map creates a topological
representation of the performances observed in the population of MF variants
(ranking formulas) included in the tbs-dataset. The trained map highlights zones
of potential interest to investors, showcasing zones with high annualized returns,
low risk, or high risk-adjusted returns. We identified these zones by examining the
component planes of the ‘annualized’, ‘var’, and ‘sharpe’ metrics, respectively.
We then conducted exploratory factor analysis in Section 5.2 to determine which
financial factors were key contributors to achieving such overperformances, and
how they contributed, through their ranking formulas.
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5 Results

5.1 Risk/Return Performances

Fig. 2 displays the risk/return performances of the MF and its variants. Blue
dots are variants from Grid Search (gs), and red dots are variants from Tabu
Search (tbs), as detailed in Sections 4.1 and 4.2. The color intensity of both blue
and red dots corresponds to their Sharpe ratios, as indicated by the colorbars
on the right. The original MF is shown as a large green dot. Variants with the
best metrics of annualized return, annualized VaR, and Sharpe ratio for each
dataset are encircled in green, with their Sharpe ratios displayed above for easy
comparison. This helps identify the best MF-based investment strategies uncov-
ered. A dashed cross across the figure originates from the risk/return metrics
of the STOXX 600 index, which serves as the benchmark index for this sample
period in Europe. Variants to the right of the vertical dashed line outperform the
market benchmark in terms of risk, while those above the horizontal dashed line
outperform in terms of annualized return. The MF nearly matches the market
benchmark in the period, though it slightly underperforms in return. Compact
notations (gs) and (tbs) are used in the subsequent discussion to refer to MF
variants from Grid Search and Tabu Search, respectively.
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Fig. 2: Plot depicting returns, risks and Sharpe ratios of the MF variants explored
through Grid and Tabu Search.
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Referring to Fig. 2 and the two accompanying datasets, we can make the
following observations. Modifying the ranking formula (tbs) by integrating addi-
tional factors (in our study, up to 11) significantly impacts both the return and
risk-adjusted return of the MF. These factors should be thoughtfully combined
into a Formula (2). This proves to be much more effective than merely changing
the number of stocks to invest in (gs); be it by expanding the universe (consid-
ering more sectors beyond the original MF’s), or choosing a higher (or lower)
number of top stocks. Fig. 2 also shows that as MF variants in (tbs) hike in an-
nualized returns, far surpassing the MF’s comparatively modest +7.38% in the
sample, they tend to also experience more and more downside risk. However,
their returns greatly outweigh the associated risks, as indicated by their high
Sharpe ratios. Based on the raw dataset (tbs) though, it is difficult to determine
which factors have the most significant impact. Hence, we conducted a factor
analysis using the multiSOM in the next section.

Risks in (tbs) are significantly concentrated due to the fixed investment in
30 stocks, compared to (gs). The latter displays a significant range of downside
risks, from around −50% until it aligns with the MF’s at approximately −22.5%
annually. Some ranking formulas in (tbs) can even reduce the MF’s downside risk
by over 10%, which is not the case with (gs), even though the number of stocks to
invest in can reach up to 100 in each rebalance. This risk concentration in (tbs) is
tied to diversification, as consistently investing in 30 stocks has less diversifiable
risk compared to large fluctuations in the number of stocks [22]. Additionally, all
MF variants in (gs) with low Sharpe ratios (less than 0.3) invest in fewer than
10 stocks (‘top_mf’ parameter). In contrast, those variants that outperform MF
in terms of Sharpe ratio or return usually do so by investing in an average of
60 stocks. Indeed, data suggests that the top quartile of (gs) in both returns
and Sharpe ratio invest in around 80 stocks on average. Regarding the ‘sectors’
parameter in (gs), data suggests that incorporating additional sectors into the
MF has no meaningful impact on the risks and returns.

These findings suggest that amassing stocks to invest in can improve the MF’s
performance metrics, but only up to a certain point. A much more effective
strategy would be to modify the ranking formula, used to select stocks. This
involves the inclusion of additional factors in thoughtful combinations, providing
a significantly larger potential for improvement.

5.2 Factor Analysis

Fig. 3 shows the component planes after training the multiSOM with the nor-
malized tbs-dataset (Section 4.3). The application of the Self-Organizing Map
(SOM) technique provided valuable insights into the underlying structure of the
dataset and facilitated the identification of distinct zones with varying invest-
ment performance characteristics. Here, we present a detailed analysis of the
SOM results based on the three zones of interest discussed earlier.

Three main zones, labeled A, B, and C, were identified based on the criteria
of superior returns, low risk, and superior risk-adjusted returns. Zones A and B
both exhibited superior returns. Zone A had the highest returns and a high
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Fig. 3: Component planes of the normalized factors and performance metrics of
MF variants after multiSOM training.

Sharpe ratio, though not as high as zone B. Zone B, carrying slightly less risk
compared to zone A (as the var map clearly shows), attained the highest Sharpe
ratios. Conversely, Zone C was characterized by the lowest risk.

Prior to multiSOM training, all feature values were normalized to the range
[0, 1]. Hence, strong red tones on the maps correspond to values close to 1, while
dark blue tones represent values close to 0. The intermediate colors cover the re-
maining spectrum between 0 and 1, e.g., a light green tone would be close to 0.5.
Map color tones provide a visual topological representation of the dataset’s nor-
malized values. The component planes of the eight performance metrics show
great consistency in themselves and align with the (tbs) in Fig. 2 and with the
underlying dataset. Higher returns correspond to increased downside risk, as
depicted in the VaR and TVaR. A higher Sharpe ratio makes VaR and TVaR
less negative, suggesting a better balance between return and risk. Consistent
color patterns are observed across profit metrics like annualized, mean, Sharpe,
and alpha, and similarities are seen among VaR, TVaR, and standard deviation
maps, which represent risk metrics (note that low risk carries a low positive std
but a high, i.e. less negative, var and tvar, so the map colors between std and
var/tvar appear reversed).

Upon visual inspection of the SOM planes in Fig. 3, factors sometimes show
spots of either high or low values within specific map zones, as result of the SOM’s
convergence. Factors with strong red tones, indicating values close to 1, rank
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consistently in ascending order within their zones. This suggests that the factors
were consistently used in ascending order in the ranking formulas of the MF
variants that align performance-wise within that zone. Conversely, factors with
dark blue tones, indicating values near 0 (or holding -1 before normalization),
rank consistently in descending order within their zones. Zones with intermediate
tones or mixed colors signal inconsistent factor behavior and thus make the factor
less determinant in the respective zones. In other words, any color tones that
deviate from the two extremes may imply that the factor was either absent in the
ranking formulas (0 before normalization, 0.5 after normalization) and/or ranked
intermittently between ascending and descending orders (alternating between -1
and 1 before normalization, between 0 and 1 after normalization), lacking a clear
direction. This is especially true when the color approaches the mid tone (close
to 0.5), and less so when the color moves towards the blue or red spectrum but
without a strong tone. In these scenarios, without a strong blue or red color, the
factor is used (or not) inconsistently in the ranking formulas and therefore is not
determinant in driving the performance in their zones.

In summary, the SOM analysis provided a comprehensive understanding of
the dataset’s structure and facilitated the identification of zones with varying
investment performance characteristics. This analysis serves as a crucial founda-
tion for further exploration and refinement of investment strategies tailored to
specific zones within the dataset.

Let’s analyze the factors in zones A, B, and C. Zone A stands out with high
annualized returns and high Sharpe ratios, revealing unexpected combinations
of fundamental factors in descending order: Yield, ROC, ∆AssetTurnover, along
with the descending momentum factor RS(6m). This is intriguing because the
literature from which these four factors were taken, including the Magic Formula
itself concerning ROC, advocates ranking companies by these factors and then
investing in the top ones, i.e., those with the highest factor values. This suggests
an ascending order in ranking formulas, contrary to the descending order implied
by Fig. 3. Let’s focus on Yield as an example, although similar stories could
be told for each of the other three factors. Yield is puzzling because the stark
distribution of strong tones of both blue and red indicates it is a convincing driver
of both returns and risks in the three zones of the map. However, its use in the
ranking formulas is unexpectedly reversed. It consistently drives high returns
and high Sharpe ratios (zones A and B) when in descending order. Conversely,
it drives low risk (and consequently low returns) when in ascending order. Given
that the return metrics include dividends, it is surprising that investing in high
Yield companies results in poor returns despite the high dividends. Investing in
high Yield companies appears to lower risks, likely due to these companies being
mature, blue-chip firms. Zone B, characterized by the highest Sharpe ratios and
strong returns, again emphasizes descending Yield, ∆AssetTurnover, ∆OpMgn,
ROC, and the momentum factor RS(6m). However, the latter two factors are
less impactful (lighter blue tones) and are not emphasized in zone B. ROA
is the key factor driving superior Sharpe ratios and risk-adjusted returns in
zone B. While ROA (Return On Assets) could understandably be a driver of
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high Sharpe ratios due to its association with high operational efficiency, it fails
in zone A, showing no clear direction. ROA appears to add a “low-risk effect”
when used in ascending order in ranking formulas. As a clear driver of low-risk
investments in zone C, ROA likely pushes ranking formulas toward lower risk,
reducing returns (not contributing to zone A) but enhancing its effectiveness
in zone B. The ∆OpMgn is also a surprising case. It shows a single dark blue
tone around zone B, with no other dark tones seen elsewhere. This indicates it
is consistently used in descending order in the ranking formulas that populate
zone B. However, descending ∆OpMgn indicates a focus on companies with the
largest year-on-year declines in margins, often troubled firms. Yet, investing in
these companies appears to enhance risk-adjusted returns. Zone C exhibits the
highest VaR (less negative) and therefore the lowest risks among Magic Formula
(MF) variants. Three factors appear to drive low-risk investments: Yield and
ROA, both discussed earlier, and to a lesser extent, Earnings Yield, in descending
order. The remaining factors—∆ROA, AccrualRatio, ∆LTDebt-to-Assets, and
∆CurrentRatio—do not seem to contribute to any of the zones.

6 Conclusions

The original Magic Formula (MF) considers only two factors, but including ad-
ditional factors can significantly improve results. This study explores 11 factors
drawn from other well-known factor-based investment strategies. For the MF,
our analysis shows that adding more top-ranked stocks improves performance
only up to a certain point. A more effective approach, yielding significant per-
formance improvements in the studied European data sample, is to add more
factors to the ranking formula and combine them in specific ways. This not only
increases returns and enhances Sharpe ratios but also minimizes value at risk.
Given that only a limited number of factors were added to the experiments, this
suggests that the optimal combination of factors may have been overlooked in
previous MF-based studies (see e.g., [6, 8]).

Our AI-based factor analysis technique provides new insights into traditional
theories of factor-based investing [2, 6, 11, 13, 20, 21]. It suggests that some fac-
tors might be effectively used in reverse, yielding new interesting results. Factors
like Yield, ROC, and momentum RS(6m) seem to exhibit inverse functionality—
stocks with the lowest values on these factors prove to be better investment
selections than those with comparatively high values. These findings suggest
the potential of our AI technique to uncover new insights and refine investment
strategies in dynamic market environments.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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