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Abstract. Modern AI systems are prohibitively unsustainable. Inspired
by our brains, neuromorphic computing promises low-latency and energy-
efficient neural network processing. Yet, current neuromorphic solutions
still struggle to rival conventional deep learning accelerators’ perfor-
mance and area efficiency in practical applications. In this encore ab-
stract, we present our published work [8] on explorations of optimiz-
ing sparse event-based neural network inference on SENECA, a scalable
and flexible neuromorphic architecture. We introduce the event-driven
depth-first convolution to increase area efficiency and latency in con-
volutional neural networks (CNNs) on the neuromorphic processor. We
benchmarked our optimized solution on sensor fusion, digit recognition,
and high-resolution object detection tasks, and showed significant im-
provements in energy, latency, and area, compared with other state-of-
the-art large-scale neuromorphic processors. To extend our published re-
sults, we performed energy-efficient event-based optical flow prediction
using our proposed methods on the neuromorphic processor. The exten-
sion study shows that sparsely activated artificial neural networks can
achieve the same level of efficiency as spiking neural networks.
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1 Event-driven Depth-first Convolution

Compared to standard convolutional neural networks, event-driven convolution
in neuromorphic computing processes sparse events from the previous layer one
by one in their order of arrival and accumulates them incrementally, directly
into the neural states of the corresponding fanned-out postsynaptic neurons.
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However, this process requires maintaining high-dimensional neural states of
convolutional layers in memory, which is impractical for the limited size of the
on-chip memory, if the output tensor has a high dimension. To overcome this
challenge, we propose the event-driven depth-first convolution.

The depth-first inference [7, 4] is a scheduling method in neural network infer-
ence that prioritizes the network’s layer (depth) dimension by consuming activa-
tions right after their generation. We present event-driven depth-first convolution
in our published paper [8]. The input events within a time step are assumed to
be sorted in spatial order from the top-left corner of the (X, Y) plane to the
bottom-right corner. Under this assumption, a neuron will receive all of its in-
put events in a pre-defined order. Accordingly, its neural state updates will be
concluded earlier than those of spatially lower-ranked neurons. As a result, it
can fire immediately after its last neuron state update without needing to wait
to process all the input events. After the event-generation process of a neuron,
the memory for its neuron state can be released. Therefore, each layer only needs
to buffer a small portion of neural states that are incomplete/partially summed
(the amount of required memory increases with the kernel size).

To characterize and quantify the improvements, we carry out experiments
in two classification tasks: gesture recognition [1] and handwritten digit classi-
fication [2], and one high-resolution object detection task [5] using the energy-
efficient event-based camera. Compared with other state-of-the-art large-scale
neuromorphic processors, our proposed optimizations result in a 6× to 300×
improvement in energy efficiency, a 3× to 15× improvement in latency, and a
3× to 100× improvement in area efficiency.

2 Sparse Event-based Optical Flow Prediction

Estimating optical flow using an event camera is robust to motion blur and
varying illumination thanks to the event stream that captures pixel brightness
changes asynchronously in high dynamic ranges. Spiking neural networks (SNNs)
for event-based optical flow are claimed to be computationally more efficient
than their deep artificial neural networks (ANNs) counterparts [3, 6], but a fair
comparison is missing in the literature.

To extend our published methods in [8], we propose an event-based optical
flow solution based on activation sparsification on the SENECA neuromorphic
processor using event-driven depth-first convolution. Therefore, the implemen-
tation can exploit the sparsity in ANN activations and SNN spikes to accel-
erate the inference of both types of neural networks. The ANN and the SNN
for comparison have similar low activation/spike density (5%) thanks to our
novel sparsification-aware training on a modified FireNet architecture [3]. In the
hardware-in-loop experiments designed to deduce the average time and energy
consumption, the SNN consumes 0.9mJ and the ANN consumes 1.2mJ per event
frame prediction on average. As a result, ANN can achieve the same level of ef-
ficiency as SNN on the neuromorphic processor while maintaining state-of-art
prediction accuracy.
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