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Abstract. The proliferation of large-scale knowledge graphs has spurred
increasing interest in the development of automated tools for reason-
ing with and extracting information from their underlying structures.
One piece of information that is critical for understanding a knowledge
graph is its class taxonomy, a hierarchical representation of the knowl-
edge graph’s type information. As such, a research area has arisen in
recent years around the automated induction of class taxonomies from
the otherwise flat knowledge graph. In this paper, we add to this area by
proposing a non-parametric path based model that leverages frequency
and co-occurrence to guide an optimization process that learns a hier-
archical representation of the knowledge graph’s classes. As the name
suggests, it is non-parametric and thus assumes no prior structure over
the taxonomy. Furthermore, our model does not require the explicit cal-
culation of class generality nor does it rely on outside domain knowledge.
The approach is closely related to work done in the field of hierarchi-
cal topic modelling, specifically hierarchical Latent Dirichlet Allocation
which our model may be viewed as a discrete adaptation of. We eval-
uate our model on three real-world datasets and find that it tends to
outperform existing methods in the literature. Finally, we discuss the
drawbacks and limitations of our model as well as avenues for future
work and extensions.
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1 Introduction

Knowledge graphs are an approach to knowledge representation that leverage
principles of graph theory to structure information. At the backbone of the
knowledge graph is the triple, which connects two entities together via a pred-
icate. This structure is analogous to directed graphs in which two vertices are
connected via an edge. As such, a set of triples defines a knowledge graph like
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the sets of vertices and edges define a directed graph. Recent years have demon-
strated the widespread use of knowledge graphs with large-scale knowledge bases
such as DBpedia [13], YAGO [22], and WikiData [33] all using knowledge graphs
as their underlying representation structure. The core of these knowledge graphs
is the class taxonomy. The class taxonomy organizes the knowledge graph’s type
information hierarchically such that more general classes appear at the top of
the hierarchy and less general classes appear lower down. These relationships
are captured in the taxonomy’s subsumption axioms. For instance, the class dog
may be subsumed by the class mammal which in turn may be subsumed by the
class animal. As we can see, this structure usually takes the form of a rooted
tree, although some knowledge graphs relax this to any directed acyclic graph.

One of the challenges in working with large-scale knowledge graphs is con-
structing the class taxonomy. Manual construction is a laborious process that
requires expert curation [21,31]. As such, automated methods have received con-
siderable research attention in recent years [9,29,35,34,23]. However, the existing
methods are not infallible, and induce taxonomies that are not reliable for prac-
tical purposes. In this paper, we aim to advance this research area by proposing
a non-parametric path based model for inducing a taxonomy of class subsump-
tion axioms. Our model, in addition to being non-parametric, does not make
any assumptions about the content of the classes. In this regard, it is language-
independent, context-independent, and non-reliant on external domain knowl-
edge. The intuition behind our model is that classes are assigned to a node on the
taxonomy tree and subject entities travel down a path through this tree, associ-
ating with themselves all the classes they come across. This reduces the problem
to finding the optimal entity paths and class allocation on the taxonomy. Such
a formulation is similar in spirit to hierarchical topic modelling, specifically hi-
erarchical Latent Dirichlet Allocation (hLDA) [4]. The main difference between
the two models stems from the discrete nature of our proposed model in contrast
to the probabilistic graphical model of hLDA. This has implications for the way
the generative processes are set up and optimized; namely, discrete optimization
for our model and Bayesian inference for hLDA. We demonstrate the viability of
our model on three real-world datasets and compare the performance against ex-
isting methods. The results indicate that our model tends to outperform existing
methods in the quality of induced taxonomies.

2 Related Work

Although our proposed model is applied for the purpose of class taxonomy in-
duction in knowledge graphs, its formulation is that of a tag hierarchy induction
model. Tag hierarchy induction is a related problem in which a hierarchy of tags
is constructed based on the documents that they annotate. These documents are
oftentimes posts from social media platforms and the tags are annotations pro-
vided by the users. For instance, the social networking services X and Instagram
allow users to annotate their posts with hashtags. As can be seen, this format of
documents and tags is not equivalent to the triple structure of knowledge graphs.
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In the subsequent section, we demonstrate how we adapt the triple format to
be compatible with classical tag hierarchy induction methods. First, however,
we discuss the existing work on tag hierarchy induction models that operate
on document-tag pairs and class taxonomy induction models that operate on
knowledge graphs.

2.1 Tag Hierarchy Induction Methods

Previous work addressing the problem of tag hierarchy induction can be broadly
divided into two categories: those that utilize domain knowledge in their ap-
proach and those that do not. Domain knowledge in this task refers to any
information other than the documents and the tags that describe them. Ap-
proaches that do not utilize domain knowledge – which we refer to as frequency-
based models – rely on the relative frequencies that tags appear at and the
co-occurrences between them. Our model belongs to the latter of these two cat-
egories. As such, we focus on frequency-based models in our overview of the
related works.

In a canonical approach, Heymann and Garcia-Molina [9] proposed an ap-
proach that uses cosine similarity to calculate tag generality. Specifically, tags
are assigned a pairwise similarity score based on the frequency with which they
annotate the same documents. This score is used to build a tag similarity graph.
The distance between tags in this graph is used as the basis for assigning tag
generality. A hierarchy is constructed by greedily adding tags as children to the
node in the tree that is most similar. In a competing approach, Schmitz [29]
proposed a method inspired by Sanderson and Croft [28] that leverages sub-
sumption rules for identifying the class connections in the induced tree. Similar
to Heyman and Garcia-Molina, tag frequencies and co-occurrences are used to
calculate these rules which are subsequently filtered to account for “idiosyncratic
vocabulary”. These rules form a directed graph which is then pruned to create
a tree. The method proposed by Li et al. [14] avoids explicitly computing tag
generality by employing agglomerative clustering for hierarchy generation. In an-
other clustering-based approach, Wang et al. [35] induce a hierarchy by repeated
application of the k-medoids algorithm with a custom distance metric based on
textual similarities. Similarly, Wetzel et al. [37] generated embeddings for tags
to serve as the basis for a similarity metric for hierarchical clustering. Gu et al.
[8] and Wang et al. [34] both use a two phase approach in which a tag hierarchy
is first induced using a strictly frequency-based approach and then optimized
using domain knowledge in the form of an existing hierarchy.

2.2 Class Taxonomy Induction

In an early method, Völker and Niepert [32] use association rule mining on
a knowledge graph’s transaction table to induce class subsumption axioms in
a greedy approach. Transaction tables describe, among other information, the
class membership of entities. Nickel et al. [19] extend RESCAL [20], a knowl-
edge graph representation model based on factorization, and apply OPTICS
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[3], a density based hierarchical clustering algorithm. Ristoski et al. [26] lever-
age the spatial information of entities to learn hierarchical representations be-
tween classes by applying the intuition that you can infer class relationships
through the neighbourhoods of their constituent entities’ embeddings. More re-
cently, Pietrasik and Reformat [23,24] achieved state-of-the-art results with a
bottom-up approach that leverages class frequencies and co-occurrences to build
a taxonomy by adding leaf nodes to an existing tree. Despite being approaches
to hierarchical clustering at their core, the models proposed by Zhang et al. [38]
and Pietrasik et al. [25] can induce a class taxonomy through selective sampling
of their tag distributions. Martel and Zouaq [16] first embed a knowledge graph
before applying hierarchical agglomeration clustering to obtain a hierarchical
tree structure. Classes are then mapped to this hierarchy to obtain a class tax-
onomy. Most recently, Horta et al. [10] described a neural approach based on
recent advances in computer vision.

3 Problem Formulation

A knowledge graph is expressed as a set of triples that relate a subject entity, s,
to an object entity, o, via a predicate, p. We thus define a knowledge graph KG as
the set KG := {⟨s, r, o⟩ ∈ E ×R×E} where s and o are entities belonging to the
set of entities, s, o ∈ E , and r is the predicate belonging to the set of predicates,
r ∈ R. When interpreted as a whole, this set forms a directed graph with entities
corresponding to vertices and predicates corresponding to edges. Recall that our
proposed model is formulated as a tag hierarchy induction method and thus
takes in document-tag pairs as input. As such, it is necessary to transform a
knowledge graph from its triple representation into one that is compatible with
our model. To do this, we adopt the tuple representation proposed by Pietrasik
and Reformat [23] in which predicate-object pairs, ⟨r, o⟩, are interpreted as tags
that annotate a subject entity in the knowledge graph. Specifically, we define a
tag as a predicate-object pair t := ⟨r, o⟩ such that t is an element of the set of
tags, t ∈ T . Tags annotate subjects, thus we define the set of subjects, namely
s ∈ S, as the subset of entities that take on subject roles in KG, S ⊆ E . Thus the
tuple representation of the knowledge graph can be formulated as KG∗ := ⟨s, t⟩.

As mentioned in the introduction, a knowledge graph’s class taxonomy is
captured as a set of subsumption axioms. Formally, we define the taxonomy,
A, as the set of axioms, A := {⟨ci → cj⟩ ∈ E → E}, where ⟨ci → cj⟩ is an
axiom indicating that class ci subsumes class cj . We note that classes are special
types of entities in the knowledge graph that capture the type information of a
subject entity, thus ci, cj ∈ E . Classes are generally identifiable in a knowledge
graph as the objects in a triple that feature the type identifying predicate for
the knowledge graph. Different knowledge graphs will use a different predicate to
capture this. DBpedia, for instance, uses rdf:type. The problem of taxonomy
induction involves the generation of subsumption axioms that form a taxonomy
that relates a knowledge graph’s class entities. In other words, this work aims
to derive A given KG∗.
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4 Model Description

In this section, we introduce our proposed model by positioning it in the context
of hLDA, the model from which it draws inspiration. Specifically, we first out-
line the foundation of hLDA before describing our departures from it. We then
provide the optimization scheme and algorithm used to train our model.

4.1 Hierarchical Latent Dirichlet Allocation

Hierarchical Latent Dirichlet Allocation is a topic model used in the field of
natural language processing to hierarchically organize documents and their cor-
responding words or tags. The backbone of hLDA is composed of two stochastic
processes that are used as non-parametric priors for generating the hierarchy and
allocating tags along it: the nested Chinese restaurant process (nCRP) [7,4] and
the stick-breaking process [30]. To understand the former, it is first necessary to
understand the process which it extends, the Chinese restaurant process (CRP)
[1]. The analogy used to describe the CRP is that of sitting patrons at a Chinese
restaurant. Specifically, consider a restaurant with an infinite number of tables,
each capable of potentially seating an infinite number of patrons. Patrons are
seated sequentially such that the first patron is seated at the first table and all
subsequent patrons are either seated at an occupied table or the first unoccu-
pied table. The probability that a patron sits at a given table is proportional to
the number of patrons that have already been seated at that table. Specifically,
the probability of the ith patron, pi, being seated at table m given M occupied
tables is:

P(pi = m|p0, ..., pi−1) =


#m

i

i− 1 + γ
m ≤ M

γ

i− 1 + γ
m = M + 1

0 m > M + 1

(1)

Where #m
i indicates the number of patrons seated at table m when patron pi

arrives and γ > 0 is a hyperparameter of the process that controls the probability
that the patron will be seated at an unoccupied table. The nCRP extends the
CRP to the hierarchical setting through nesting. Continuing with the analogy,
consider the same restaurant described earlier but instead of being served food,
patrons are served a reference to another restaurant they must go to. At this
new restaurant, they are once again seated in the fashion described in Equation
1 and given a reference to another restaurant. This process continues for an
infinite number of times. It is important to note that all patrons start at the
same restaurant and that all restaurants have only one referring restaurant.
Under these conditions, the paths taken by the patrons generate a tree of infinite
depth and a potentially infinite number of branches. Each restaurant visited
corresponds to a node in the tree such that the lth restaurant visited is the tree
node at level l. Formally, the probability that upon arriving at node nk, patron
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pi takes path through nc having already visited l − 1 nodes is:

P(pli = nc | p0,p1, ...,pi−1,pi[1 : l − 1], γ) =


#nc

i

#nk
i + γ

nc ∈ Nnk

γ

#nk
i + γ

nc /∈ Nnk

(2)

Where pli indicates the path of patron pi at the lth level of the tree, Nnk
is the

set of all previously taken paths from nk, pi is the path taken by patron pi with
the brackets [a : b] denoting the partial path from level a to level b, and #nk

i and
#nc

i are the number of patrons that have passed through communities nk and nc

at the time patron pi arrived, respectively. While the nCRP is a non-parametric
prior over the tree structure of the hierarchy, the stick-breaking process is a non-
parametric prior over the infinite number of levels in the hierarchy. As with the
previous two processes, the stick-breaking process is explained by an analogy
from which it derives its name. The analogy starts with taking a stick of a
length of one and breaking it at a point sampled from the Beta distribution.
Then, one piece of the stick is discarded and the other is broken again as per the
Beta distribution. This process repeats infinitely, leaving a progressively smaller
remainder of the stick. Formally, the length of the discarded stick at the lth

break, al, is defined as follows:

al = vl
l−1∏
k=1

(1− vk) (3)

Where vl is a draw from the Beta distribution at the lth iteration, namely vl ∼
Beta(µσ, (1−µ)σ). Here 1 > µ > 0 and σ > 0 are hyperparameters of the process
and control the mean and variance, respectively. As can be seen, the resulting
als constitute a probability mass function that may be defined as follows:

Stick(µ, σ) =
∞∑
l=1

al

=

∞∑
l=1

vl
l−1∏
k=1

(1− vk) (4)

This distribution is leveraged by hLDA to allocate tags on the hierarchy. Specif-
ically, hLDA first generates a tree using nCRP by sampling a path for each
document. We note that in practice the tree must be bounded and thus the
path selection stops after a predetermined depth of L. Each node in this tree
is associated with a topic distribution, b, drawn from the Dirichlet distribu-
tion. For each tag tj in the document di, a level distribution is sampled from a
stick-breaking distribution truncated to a depth of L, denoted as l. The level dis-
tribution is sampled by parameterizing the Multinomial distribution to give the
level indicator zj . Tags are generated for each document by sampling the topic
corresponding to the previously drawn paths and level indicators. The process
is summarized as follows:
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– for each node in the tree nk

• bk ∼ Dirichlet(η)

– for each document di

• pi ∼ nCRP(γ)
• li ∼ Stick(µ, σ)
• for each tag tj in document di

∗ zj ∼ Multinomial(li)
∗ tj ∼ bpi[zj ]

This generative model serves as the foundation of our proposed model. With this
foundation, we can now outline our discretization changes.

4.2 Proposed Model

In introducing our proposed model, we leverage the notation used in the previ-
ous section, adapting it to match the tuple structure of the knowledge graph.
Specifically, we make a distinction between subject entity paths, pS

i ∈ PS , and
tag paths, pT

j ∈ PT . Each subject entity si has a corresponding path through
the tree pS

i . As in hLDA, the length of path is equal to the tree depth, L. Simi-
larly, each tag tj has a corresponding path pT

j as well as a level indicator zj ∈ Z

which is a one-hot vector of size L indicating the level on pT
j that tj belongs to.

Thus, the node that tj belongs to is the zj
th node on path pT

j , written as pT
j [zj ].

This formulation allows the state of the tree to be described by {PS ,PT ,Z}.
The primary difference between our model and hLDA is the discrete nature of
tag assignment. Each tag belongs to only one node in the tree, thus each node
is a set of tags as opposed to a distribution as is the case in hLDA. As such,
subjects passing through node nk are associated with all the tags that belong
to the node, denoted as Tnk

. We cannot, therefore, set up the generative model
as a problem to be solved by Bayesian inference. Instead, we define an objective
function and learn the model through discrete optimization.

Objective Function The objective function, J , defines the goal in the opti-
mization process and acts as a prior for what the induced class taxonomy will
look like. For instance, the objective function may favour narrow trees with larger
nodes. This adds a degree of flexibility as different objective functions may be
used on different datasets if there is a prior expectation about the structure
of the taxonomy. In our evaluation procedures, we use the following objective
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function:

J =
∑
si∈S

∑
nk∈pS

i

∑
tj∈Tnk


1

|Tnk
|

if tj ∈ Tsi
0 otherwise

−
∑
si∈T

∑
nk∈pS

i

{
|Tnk

|+ α if Tnk
∩ Tsi = ∅

0 otherwise

−
∑
si∈T

∑
nl∈pS

i

{
|Tnk

|(L− nlevel
k ) + α if |Tnk

| > 1

0 otherwise
(5)

Where Tsi is the set of tags that are associated with subject si. To increase
readability, we group the objective function into terms that capture a structural
aspect the model is selecting for. Specifically:

– The first term adds all of the subject tags that appear in its path by an
amount inversely proportional to the size of the node the tag is a part of.

– The second term is a penalty for a subject passing through a node that does
not contain any tags that describe the subject. The penalty is proportional
to the size of the node plus a penalty constant α > 0.

– The third term penalizes nodes that contain more than one tag such that
the penalty is larger for nodes higher in the tree. nlevel

k is node nk’s level in
the tree.

Broadly speaking, this objective function favours trees that have few tags at
each node, with greater penalties for multi-tagged nodes that are higher in the
hierarchy.

4.3 Model Optimization

Learning the best model is a problem of local search, wherein the space of pos-
sible states is searched by randomly initializing the tree variables, {PS ,PT ,Z},
and generating candidate solutions through small adjustments. These candidates
are evaluated using the objective function and chosen as the new solution ac-
cording to a heuristic. There have been many methods proposed for traversing
the solution space which may be applied to our model. In this paper, we focus
on optimization by simulated annealing.

Simulated Annealing Simulated annealing [12,5], is a probabilistic approach
to discrete optimization based on a process from metallurgy used to change the
properties of a material by heating and then slowly cooling it. Applied to our
problem, this translates to searching the state space in a way such that lower
scoring states are less likely to be accepted as time progresses and the system
cools. More concretely, the space of potential solutions is traversed by generating
neighbouring states and moving to them according to the following rule: if the
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neighbour state is an improvement as per the objective function then move to
the state, otherwise move to it with the following probability:

P(x = x′) = exp(−Jx − Jx′

θiter
)

Where x and x′ are the current and neighbour states, and Jx and Jx′ are the
objective functions of the current and neighbour states, respectively. We notice
that the lower scoring the neighbouring state is relative to the current state,
the less likely it is to be taken. The temperature hyperparameter, θiter, controls
the probability of moving to lower neighbour states. Over time, the temperature
decreases, thereby decreasing the probability of moving to lower states until the
process is reduced to a basic hill-climbing algorithm. The annealing schedule
controls the rate at which the temperature decreases. In our algorithm, we use
the following annealing schedule:

θiter = θ0 ∗
θfinal
θ0

iter

itermax

Where θ0 and θfinal are hyperparameters of the annealing schedule represent-
ing the initial and final temperatures, respectively, such that 0 < θfinal < θ0.
iter and itermax represent the current and maximum number of iterations, re-
spectively. Algorithm 1 outlines the training procedure for our model. In line
5, neighbour generation is performed by updating subjects and tags alternately
such that subjects and tags receive the same number of updates in the training
process. We note, however, that for datasets with skewed proportions of subjects
to tags, it may be advantageous to perform multiple subject path updates before
updating a tag, or vice-versa. In line 13, rand(0,1) is a random number greater
than or equal to zero and less than one.

Updating Subjects To update the path for si, the current path pS
i is first

removed from the tree. Any nodes in pS
i that have no constituent subjects, tags,

or descendants with tags are removed from the tree. This ensures that unused
tree branches are pruned before sampling a new path. To generate a new pS

i , a
terminal node, p̂Si , is sampled from the Multinomial distribution:

p̂Si ∼ Multinomial(πS
k )

Where πS
k is the probability of selecting node nk calcualted as:

P (p̂Si = nk) ∝


nlevel
k

L
if nk is an internal node

γ if nk is a leaf node

Where γ > 0 is a hyperparameter controlling how often new paths are chosen.
Once p̂Si is sampled, the full path pS

i can be derived by moving up through
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Algorithm 1 Training Procedure Using Simulated Annealing
Input: S, T , θ0, θfinal, α, η, itermax

Output: PS , PT , Z
1: Randomly initialize tree state x = {PS ,PT ,Z}
2: Calculate objective function for current state Jx

3: for iter in 1, 2, ..., itermax do
4: Update θiter according to annealing schedule
5: if iter % 2 = 0 then
6: Randomly choose si ∈ S to update
7: Obtain x′ by updating pS

i

8: else
9: Randomly choose tj ∈ T to update

10: Obtain x′ by updating pT
j and zj

11: end if
12: Calculate objective function for neighbour state Jx′

13: if rand(0,1) < exp(−Jx − Jx′

θiter
) then

14: Update x = x′

15: Update Jx = Jx′

16: end if
17: end for
18: Return tree at final state x = {PS ,PT ,Z}

the parent nodes until the root. If p̂Si is an internal node, an empty branch is
appended to p̂Si such that the path has L nodes. This process is similar in spirit
to path sampling in hLDA, with three modifications: paths are not sampled at
each level; existing paths are sampled uniformly; and the probability of creating
a new path is dependent on the level of the node in the hierarchy.

Updating Tags To update the location of tag ti in the hierarchy, both pT
j and

zj need to be sampled. Similarly as to when updating subjects, tj is first removed
from the hierarchy and unused branches are pruned. To update the tag path,
pT
j , we uniformly sample from the set of subject paths of subjects described by

tj . Formally:
pT
j ∼ Uniform({pS

i ∈ PS
−j : tj ∈ Tsi})

Where the subscript −j indicates the preceding variable without the inclusion of
j. Having sampled pT

j , tj has to be assigned to a node along its new path. We
sample tag level indicator zj from the Multinomial distribution.

zj ∼ Multinomial(πT
k )

Where πT
l is the probability distribution that zj = l, calculated as:

P (zj = l) ∝
η + |{si ∈ S−j : p

T
j [l] = pS

i [l] ∧ tj ∈ Tsi}|
η + |{si ∈ S−j : pT

j [l] = pS
i [l]}|
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The numerator counts the number of subjects that are described by tj and pass
through the node at pT

j [l]. The denominator counts the number of subjects
that pass through pT

j [l]. η > 0 is a small number that controls the probability
of choosing nodes with no subjects described by tj . Once the level has been
sampled, tj is assigned to the node at pT

j [zj ].

5 Evaluation

Evaluation of taxonomy induction models is challenging due to the subjective
nature of evaluating the correctness of the results. Authors such as Gu et al.
[8] and Wang et al. [36] employed domain experts to manually evaluate the
correctness of the induced axioms whereas Wang et al. [35] used a ranking ap-
proach. Others, such as Liu et al. [15] and Almoqhim et al. [2], leverage a gold
standard taxonomy against which performance metrics are calculated. Although
this method is less time consuming, expensive, and prone to bias than manual
evaluation when a gold standard can be established, it is prone to inaccura-
cies and tends to misclassify valid subsumptions [23]. Nevertheless, this is the
evaluation method we employ in our work as gold standards can be derived for
our three datasets. Specifically, we use the F1 score [6] as our measure of cor-
rectness. Hyperparameter selection is performed via a grid search of possible
hyperparameter combinations and our best performing model is compared with
models from the literature. Our source code along with the datasets used in our
work is provided on GitHub4 [17].

5.1 Datasets

We evaluated our model on three real-world datasets: Carnivora, DBpedia, and
WordNet. What follows is a brief description of the datasets.

Carnivora The Carnivora dataset consists of the scientific classification of 253
animals that belong to the Carnivora order as described by Hunter [11]. The
results were obtained by querying the Catalogue of Life: 2019 Annual Checklist
[27] for the classification of each animal by its common name. We notice that
since all of the animals are of the same order, it follows that they are also of
the same kingdom, phylum, and class. We remove this redundant information
and only include the lower three levels: order, family, genus. This results in a
three-level taxonomy of 120 nodes distributed as follows: one node in the first
level, twelve nodes in the second level, and 107 nodes in the third level. Hunter’s
classification provides the gold standard for our dataset.

DBpedia The DBpedia dataset was generated by querying for entities that be-
long on the top three levels of the gold standard DBpedia ontology5. Specifically,
4 https://github.com/mpietrasik/nppb
5 http://mappings.dbpedia.org/server/ontology/classes/

https://github.com/mpietrasik/nppb
http://mappings.dbpedia.org/server/ontology/classes/
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Table 1. Comparison of results obtained by our model and benchmarks on our datasets.
(F1 score mean ± standard deviation.)

Model Carnivora DBpedia WordNet
Heymann and Garcia-Molina 0.9765± 0.0092 0.8673± 0.0230 0.5447± 0.0149
Schmitz 0.9831± 0.0000 0.8502± 0.0000 0.6988± 0.0000
Wang et al. (2012) 0.8571± 0.0279 0.6481± 0.0854 0.4462± 0.0135
Wang et al. (2018) 0.6908± 0.1851 0.5318± 0.1099 0.4286± 0.0949
Pietrasik and Reformat 0.9731± 0.0092 0.8788± 0.0086 0.6171± 0.0135

Our Model 0.9866± 0.0141 0.8981± 0.0370 0.5508± 0.0128

for each tag in the first three levels, all the entities that are described by the
tag through the predicate rdf:type were queried. If this set contained fifteen
or less entities, the tag was discarded. Otherwise, fifteen entities were selected
randomly and queried for all the tags in the first three levels that describe them.
At the time of querying, this process eliminated 87 out of 192 tags, meaning that
at the three topmost levels 45% of DBpedia ontology terms have fifteen or fewer
entities they describe. The majority of these have zero. The final tag hierarchy
has 105 nodes with one root node, 27 nodes in the second level, and 77 nodes in
the third level.

WordNet The WordNet dataset is a subset of DBpedia queried to contain
subjects of types that exist in the WordNet lexicon [18]. The gold standard
was obtained as the DBpedia relations between WordNet classes through the
rdfs:subClassOf predicate. Specifically, yago:PhysicalEntity100001930 was
set as the root class and the taxonomy is built by recursively querying for sub-
classes using the rdfs:subClassOf predicate. The derived WordNet class tax-
onomy contained 100 tags split over four levels with one root node, five nodes in
the second level, 23 in the third level, and 71 in the fourth level. We note that
it was necessary to collapse the taxonomy by removing tags that were missing
in the dataset and adopting orphaned tags with the nearest ancestor.

5.2 Results

Our model was applied to each dataset five times to account for stochasticity in
the training process. Hyperparameters were chosen by a grid search exploration
of the hyperparameter space. We compare our model with benchmarks obtained
from implementations of five methods found in the literature: Heymann and
Garcia-Molina, Schmitz, Wang et al . (2012), Wang et al. (2018), and Pietrasik
and Reformat. The methods were chosen based on the quality and thoroughness
of the details necessary for implementation as well as the lack of reliance on
domain knowledge. We note, therefore, that our implementation of Wang et
al. (2018) only considers the unsupervised model, without domain knowledge
optimization. As with our model, we performed hyperparameter exploration on
the benchmark methods and applied each dataset five times. The F1 means and
standard deviations of all the methods tested are reported in Table 1.
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For the Carnivora dataset, we used half a million simulated annealing steps
to train our model. We found that the hyperparameter values of θ0 = 2.5,
θfinal = 0.01, α = 10, γ = 0.01, and η = 0.01 produce the best results. The
threshold values for Heymann and Garcia-Molina and Schmitz were 0.3 and 0.9,
respectively. Wang et al. (2012) had both k and minimum cluster size set to
22. Pietrasik and Reformat was tested with an α value of 0.7. The Carnivora
dataset is considered easy for two reasons: all entities have exactly three classes,
each belonging to a different level in the hierarchy; and all entities are classified
correctly. We see this reflected in the high F1 scores for all models. We note
that the errors in our model are due to the inability to infer the correct order of
parent-child relations when parent and child occur at the same frequencies. The
poor performance of Wang et al. (2018) is explained by the model’s lack of ability
to differentiate between parent nodes that have the same co-occurrence rates.
The parent is therefore chosen based on which one came first in the vocabulary
which is random in our implementation.

To account for dataset complexity, ten million simulated annealing steps were
performed to train our model on the DBpedia dataset finding that the same
hyperparameter combination as that of Carnivora produced the best results. We
use the same threshold value for Heymann and Garcia-Molina as before and
0.65 for Schmitz. Wang et al. (2012) used 17 for k and minimum cluster size and
Pietrasik and Reformat had an α value of 0.5. We notice that this dataset is more
difficult as reflected by the lower average F1 scores. In contrast to Carnivora,
the DBpedia dataset is inconsistent in the amount of tags for each document
and there are errors in the assigning of classes to subjects. In light of this, the
higher difference between our model and the benchmark models suggests that
our model is more robust to less structured datasets.

Our model performed comparatively worse on the WordNet dataset. Simi-
lar to DBpedia, the dataset presents challenges resulting from its incongruities
between class labels and the gold standard taxonomy. Moreover, the dataset
generation process included the collapsing of taxonomy nodes, further adding to
its complexity. As with DBpedia, we performed ten million simulated annealing
steps to train our model. We found, however, that a different hyperparame-
ter combination was optimal on the dataset. Specifically, we used θ0 = 2.5,
θfinal = 0.01, α = 1, γ = 0.1, and η = 0.01 in our results. We used thresholds
value of 0.5 and 0.9 for Heymann and Garcia-Molina and Schmitz, respectively
The same hyperparameters were used for Wang (2012) as in DBpedia and an α
value of 0.9 for Pietrasik and Reformat. Despite trailing two benchmark methods
on the WordNet dataset, our model, on the whole, outperforms existing methods
in our experiments.

5.3 Model Limitations

The primary limitation of our model is that of efficient model optimization.
Currently, our model cannot train fast enough to handle very large datasets.
The principal cause of this is the size of the search space when combined with
the optimization technique used to traverse it. We can approximate the upper
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bound of the search space using perfect m-ary trees which are defined as rooted
trees where each node has exactly m children and all leaf nodes are at a depth
of L. We can arrive at this bound by assigning subject and tag paths to the
leaf nodes of the maximally branching m-ary tree for our model. The maximum
branching factor is |S| + |A|, meaning there are (|S| + |A|)L nodes at level L.
We approximate the upper bound of the size of the state space as follows:

L|Z|((|S|+ |A|)L))
|S|+|A|

(6)

This value is derived by counting all possible path allocations on the leaf nodes
of the maximum branching m-ary tree at all possible level allocations. As it is an
upper bound, it overestimates the true size of the state space. We see that the
state space scales too quickly with respect to the input for simulated annealing.
Another limitation of our model is that of inferring the correct order of parent-
child relations when parent and child classes co-occur at the same frequencies.
To our model, these two classes are identical and their relative assignment in the
hierarchy will be determined randomly. We note that this is a problem inherent
to all frequency-based models.

6 Conclusion and Future Work

In this paper, we proposed a non-parametric path based model for inducing a
taxonomy of classes from a knowledge graph. Our model draws inspiration from
hLDA and transfers aspects from it to the discrete space. In order to apply these
ideas, we first transformed the knowledge graph from its original triple structure
to a tuple structure. Our model was evaluated by inducing a class taxonomy
for three real-world datasets and comparing the resulting subsumption axioms
to their respective gold standards. Our model is competitive with or outper-
forms benchmarks obtained from similar models in the literature. Future work
can include a manual, qualitative evaluation of the induced taxonomies along
the attributes identified by Nickerson et al. [21] that define a useful taxonomy:
conciseness, robustness, comprehensiveness, extendability, and explainability. In
addition to this, we also discussed the limitations currently present in our model,
namely its inability to scale to large datasets. With this in mind we propose two
directions for future work on the problem of scalability: decrease the size of
the search space by modifying subject and tag update procedures; and explore
different optimization methods for traversing the search space. Another avenue
for future research is exploring our model’s capacity for hierarchical clustering
of subject entities. We can consider the set of subjects that travel through the
same node as belonging to the same cluster at the level of that node. Thus,
at the lowest level in the hierarchy, subjects are clustered together only if they
have identical paths. As the clustering moves up the taxonomy, the clusters are
merged as the branches in the tree join together. The classes associated with
nodes may be viewed as descriptors of the clusters.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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