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Abstract. We consider a job-shop scheduling problem where a single
automated guided vehicle (AGV) transports jobs between workstations.
There are multiple but few job types, each with a specific path through
the workstations and a specific processing time per workstation. The
AGV can transport one job at a time, and there are no buffers, meaning
each workstation must be empty before the AGV can deliver a new job.
The goal is to schedule the AGV to minimize the makespan, which is
the time when the last job is processed. We provide an Integer Linear
Programming (ILP) formulation to find an optimal solution, and ob-
serve that within few minutes it can only solve small instances. As a
remedy, we design a heuristic algorithm using the Nested Monte-Carlo
Search (NMCS) paradigm. We compare its performance with two greedy
algorithms and a local search approach. In the experiments, the NMCS-
heuristic significantly outperforms traditional ILP methods and greedy
algorithms under limited time resources.
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1 Introduction

Automated guided vehicles (AGVs) are increasingly being used in modern manu-
facturing plants to enable high-mix, low-volume production, where diverse prod-
uct types are manufactured in small quantities [17]. Their task is to transport
products from one workstation to another in the production process. AGVs and
the related Autonomous Mobile Robots (AMRs) and Autonomous Intelligent
Vehicles (AIVs), offer flexibility in navigating between workstations, unlike tra-
ditional conveyor belts. This flexibility makes them ideal for transporting jobs
along different production paths within assembly lines.

The flexibility of AGVs introduces unique scheduling challenges that are ab-
sent in conveyor-based systems: AGVs need to decide which product to trans-
port next taking into account the distances between the workstations and times
needed to process products at workstations. These decisions influence the per-
formance of the system, which is typically measured in makespan – the total
time needed to produce all products [18].
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Many of the underlying scheduling problems are NP-hard in general [5, 13],
even with a single AGV, if every product has individual processing times at
workstations. For the specific case of a single type of product (the processing time
at a station is the same for every product), the NP-hardness is an open problem,
but the problem remains difficult to solve (to optimality) for relatively small
instances, even when the scheduling concerns only one AGV [4]. In this paper,
motivated by a real-world case of a small production line with one AGV, we
build upon the previous work of Boom et al. [4] and develop quick heuristics that
compute good schedules for a setting with relatively small number of different
types of jobs. Concretely, we study the following scheduling problem: there is
a single AGV in a job-shop environment where multiple jobs (products) of few
different types are to be processed on several workstations. Each job type has a
predetermined path through the workstations, and every job of that type requires
transportation between the corresponding workstations by the AGV, which can
only carry one job at a time. The stations have no buffers: a job blocks a station
from processing next job until the AGV moves the processed job to the next
station. The goal is to minimize the overall time needed to process all jobs.
While being a fundamental problem to be solved, it also describes an industrial
scenario of a demo-line of a car-manufacturing company VDL Nedcar, which
actually triggered our interest in this setting.

In this paper, we adapt the Nested Monte-Carlo Search technique [7] to our
optimization problem. We guide the search with the help of greedy roll-outs.
To evaluate the performance of the developed heuristic approach, we compare
it with the performance of commercial solvers on integer-linear-programming
(ILP) formulations of the problem, and with the performance of natural greedy
algorithms. For this, we adapt the ILP-formulation of Boom et al. [4] of the
single-job-type single-AGV setting to our setting with several job types. We also
adapt the greedy algorithms of Boom et al. [4] to our setting; this is a non-
trivial adaptation, since, as we observe, for multiple job-types, standard greedy
approaches may lead to deadlocks. Finally, we also design a local-search heuristic
and evaluate its performance as a post-processing heuristic.

The results demonstrate effectiveness of our heuristic algorithm compared to
traditional ILP methods and greedy algorithms. The results prove the potential
of our heuristic for real-world applications, particularly in settings where quick
and efficient scheduling decisions are critical. Additionally, besides the setting
with multiple job-types, we tested our heuristic in the single job-type setting,
and observe that our heuristic performs better that the heuristics of [4].

Paper organization. In Section 2, we formally define the problem. We
then review the related literature in Section 3. We describe the ILP formulation
and the developed algorithms in Section 4. The experiments are described and
presented in Section 5 and 6, respectively. We conclude the paper in Section 7.
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Fig. 1. In this instance of the problem, there is two types of jobs: the one following
the green path and the one on the red path.

2 Problem Definition

We consider the makespan minimization problem in the following job-shop set-
ting. There are m workstations and n jobs. Each job is one of t types. A worksta-
tion path is a sequence of a subset of workstations. Every job of type k = 1, ..., t
needs to be processed on the workstations given by a given workstation path Pk,
in the order as they appear in Pk. In the beginning, all jobs are at a starting
station, which will be referred to as the source station, or station 0. Before a job
of type k can be processed at station i ∈ Pk, it needs to be transported from the
previous station on the path Pk, which we denote as prev(i, k), to station i.

A single AGV performs every transportation task. The AGV can transport
only one job at a time. When the AGV arrives with a job at station i, 1 ≤ i ≤ m,
the job can be moved from the AGV to the station only if the station has no job
on it. That is, we assume that a job from a station cannot be swapped with a job
on the AGV, we assume that there is no (storage) buffer at stations 1,2,. . . ,m,
where jobs can be temporarily stored, and we assume that every workstation can
process at most one job at a time. Upon moving a job of type k to station i, the
processing of the jobs starts immediately, and takes time pr(i, k). We assume,
without loss of generality, that the time it takes to load/unload the job to/from
the AGV at any station is zero. The AGV can move, with or without a job on it,
from any station to any other station. It takes time d(i, i′) to move from station
i to station i′.

The processing is non-preemptive, i.e., it cannot be interrupted. After a job
has been processed by the last station on its workstation path, it needs to be
transported to the so called sink station, which we also call the station m + 1.
At this moment, the job is fully processed and considered leaving the system.
Equivalently, we can consider station m + 1 to be able to store an arbitrary
number of jobs. Station m+1 does not appear in the path of any job type. How-
ever, every workstation path starts with station 0 (the source station). Figure 1
illustrates, schematically, the setting with two types of jobs.

We seek a schedule for the AGV to transport all the jobs along their work-
station paths such that the time when the last job is processed and transported
to the sink station m+ 1 is minimized. The schedule is not bound to transport
a job along its entire workstation path before doing anything else: the schedule
can interleave transportation tasks of various jobs and of various types. Since
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the AGV can carry at most one job at a time, a schedule can be expressed as a
sequence of transportation tasks, which are executed by the AGV in the given
order. Here, a transportation task consists in transporting a job j of type k from
station i to the next station on j-th workstation path Pk, denoted by next(i, k).
We denote by a tuple (i, k) the transportation task of transporting the job of
type k from station i to the next station along Pk. Hence, a schedule is a se-
quence S = ((s0, k0), (s1, k1), . . . , (sp, kp), . . .) of transportation tasks, such that
for every job of type k and for every i ∈ Pk there is in S one transportation task
(i, k) (recall that station 0 is always in Pk). Thus, the size of S is

∑
k nk · |Pk|,

where nk is the number of jobs of type k. Naturally, not every permutation of
the mentioned transportation tasks is a valid schedule; transportation task (s, k)
at position p of S is valid if the station s contains a job of type k, and the station
next(s, k) has no job on it.

The time needed to execute a transportation task (i, k) is a sum of the fol-
lowing times:

– time d(L, i) from the AGV’s current location (station) L to station i,
– waiting time W of the AGV at station i for the the job at station i to be

processed. This value can also be 0 in case processing finished before the
AGV arrived at station i,

– transportation time d(i, next(i, k)).

Notice that both values L and W depend on the previous transportation tasks
performed by the AGV. The completion time of the transportation task (sp, kp)
at position p in schedule S, for p = 0, . . . , |S|, is denoted by Cp. The objective
is to minimize the makespan, i.e., the completion time C|S|−1.

3 Related Work

Several papers deal with the topic of scheduling AGVs in a manufacturing envi-
ronment [15, 20, 25]. Typically, the literature deals with different concrete man-
ufacturing settings where transportation happens via AGVs or the like. Our
problem with one type of jobs is a special instance of the robotic-cell problem
[5] (RCP). In RCP, all jobs need to be processed by a set of machines in the
same order, with different processing times per machine and per job, with no
buffers in between stations and with one AGV transporting the jobs from one
machine to another. RCP where every transportation is instant (takes zero time)
becomes a well-studied flow-shop problem, which is known to be NP-hard [13].
Our problem with one type of jobs is a special case of RCP, since in RCP, ev-
ery job can be of a unique type. It has been introduced and studied by Boom
et al. [4], who provided a characterization of valid schedules, developed an ILP
formulation of the problem, observed its computational infeasibility, and devel-
oped and compared greedy algorithms and a heuristic based on iterative solving
of smaller subproblems via ILP. Our problem with several job types allows for
different workstation paths, which takes the setting away from RCP (and the
related flow-shop).
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Our setting does not contain buffers at the station. There are relatively many
papers that considered buffers. For example, Caumond et al. [6] develops a gen-
eral mathematical framework and an ILP formulation for a general scheduling
setting with buffers of certain capacities at stations. Similar problems have been
studied with the assumption of infinite input/output buffer space at each ma-
chine [3, 12, 10, 27, 6] or transfer stations with unlimited buffer space [19].

Since we allow arbitrary workstation paths, our problem is a job-shop schedul-
ing problem with job-transportation via single AGV, without buffers at stations,
and a limited number of job types.

A problem similar to ours is described in [14], where a flexible re-entrant
job-shop with blocking and two AGVs is addressed and an MILP is developed,
and solutions for small instances are presented. In our problem, we consider one
AGV, and we do not consider re-entering jobs (i.e., jobs that go through the same
machine more than once) and we aim to find a feasible and close-to optimum
schedules solution for larger instances in a limited amount of time (than what
an MILP can provide).

Monte-Carlo search algorithms have been used quite successfully in optimiza-
tion and scheduling domains [1, 11]. Especially nested Monte-Carlo [7, 9] search
has shown promising results in applications ranging from bus network regulation
[8], the traveling-salesperson problem with time windows [21], the snake-in-the-
box problem [16] and even finding the ground state energy of proteins [23]. A
subset of the authors used a hierarchical Monte-Carlo tree-search to find good
orderings of jobs for a black-box scheduler of a manufacturing line [26].

4 Methods

In the following sections we describe the algorithms that we designed and im-
plemented for our scheduling problem.

4.1 ILP Formulation

ILP formulation expresses our scheduling problem as a minimization problem of
a linear function over integer variables, subject to linear constraints (inequalities)
over integer variables. First, we describe the objective function, the main vari-
ables and how they encode a schedule. Afterwards, we describe linear constraints
that ensure the variables encode a valid schedule.

Decision Variables and Objective Function. We view the scheduling prob-
lem as the problem of deciding, for every position (index) p = 1, 2, . . . , |S| in the
schedule S, which transportation task to execute at position p. We model such
a decision by a binary decision variable

Xi,k,p ∈ {0, 1}, (1)



6 E. von Bothmer et al.

which has value of 1 if transportation task (i, k) is assigned to position p, and it
has value of 0 otherwise. We define such a decision variable for all combinations
of values of i, k, and p.

Moreover, we define the variable Cp, p = 1, . . . , |S|, representing the comple-
tion time of the task assigned to position p in schedule S.

The objective function that we want to minimize is C|S|.

Validity Constraints. We first assure that exactly one transportation task is
assigned to each position p in S. We can assure this with the following equalities:

∀p :
∑
k

∑
i∈Pk

Xi,k,p = 1 (2)

Moreover, for every type k and every station i ∈ Pk, we need to schedule nk

many tasks (i, k) in S:

∀k, i ∈ Pk :
∑
p

Xi,k,p = nk (3)

The above constraints ensure that the variables Xi,k,p model a permutation of
all the required transportation tasks. We further need to ensure that the permu-
tation modeled by variables Xi,k,p is a valid schedule. Specifically, transportation
task (i, k) can be positioned at p in schedule S if:

– There is a job of type k at station i. This means that, up until and not
including position p, the number of occurrences of task (prev(i, k), k) (how
many times did a job of type k arrive at station i) is one larger than the
number of occurrences of task (i, k) (how many times did a job of type k
leave station i). We get the following conditional constraint:1

∀i, k, p : Xi,k,p = 1 =⇒
∑
q<p

Xprev(i,k),k,q −
∑
r<p

Xi,k,r = 1 (4)

– There is no job at the station next(i, k). That is, the number of times a job
is moved to station next(i, k) needs to be equal to the number of times a job
is move from station next(i, k). Let T be the set of tuples (i′, k′) such that
next(i′, k′) = next(i, k). Then, we get the following constraints

∀i, k, p : Xi,k,p = 1 =⇒
p−1∑
q=0

∑
(i′,k′)∈T

Xi′,k′,q −
p−1∑
r=0

t∑
k′=1

Xnext(i,k),k,r = 0. (5)

1 Formally, conditional constraints are not part of an ILP formulation; however,
standard modeling techniques can transform the conditional constraints to non-
conditional, and the ILP solver that we used does this automatically.
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Completion-Time Constraints. We now present constraints that assure that
the value of variable Cp is equal to the completion time of the transportation
task that is schedule at position p in schedule S. We relate the value of Cp to the
value of the previous variable Cp−1. We start with the constraint for C1 (recall
that the AGV starts at station 0):

C1 =
∑
k

X0,k,1 · d(0, next(0, k)) (6)

Assume that the transportation task at position p is (i, k). Then, the value of Cp

for p > 1 needs to satisfy the following two constraints. First, Cp is at least time
Cp−1 (time when AGV finished the previous task p− 1) plus the time to travel
from the drop-off station of transportation task p − 1 to the pick-up station of
task p plus the time to further travel to the drop-off station of task p. We get
the following constraint

Cp ≥ Cp−1 + d(next(i′, k′), i) + d(i, next(i, k)), (7)

where (i′, k′) is the transportation task at position p − 1. Second, if the AGV
needs to wait for a job to finish at station i, then Cp will be the time when the
job has been delivered to station i, plus its processing time, plus the time needed
to deliver the job to its next station. We get the following constraint

Cp ≥ PCp + pr(i, k) + d(i, next(i, k)), (8)

where PCp is the time when the job at station i has been brought to station
i, which is equal to some completion time Cp′ of a transportation task p′ < p.
Naturally, PCp is a variable, and can be computed by the following constraints:

∀i, k, p, q < p : PCp ≥ Cq − (1− Yi,k,p,q) ·M , (9)

where M is a large constant and Yi,k,p,q ∈ {0, 1} is a binary variable, which
takes value 1 if task (i, k) is assigned to position p and the latest instance of task
(prev(i, k), k) is assigned to position q. The constraints for Yi,k,p,q are

∀i, k, p, q : Yi,k,p,q ≥ Xprev(i,k),k,q +Xi,k,p − 1−
∑

q+1≤r<p

Xprev(i,k),k,r. (10)

4.2 Greedy Algorithms

Two greedy algorithms were implemented as a benchmark for the heuristic solu-
tion. Both greedy algorithms create the schedule S iteratively, choosing the next
transportation task among all valid choices according to a greedy criterion. The
greedy criteria of our greedy algorithms follow the same principle as the ones
described by [4] for the setting with one job type. However, with several job
types, greedy algorithms can lead to a deadlock, i.e., a situation when schedule
is not finished, but there is no valid choice for a transportation task to be made.
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To illustrate a deadlock, consider the setting in Figure 1 as a graph, with
stations as vertices and paths as edges. A deadlock happens when there is a
cycle in the graph, and all the stations in the cycle have a job on them. In our
example, if station 2 has a job following the green path and station 3 has a job
following the red path in Figure 1, neither of the two jobs can be transported
to the next station. This means that, if an algorithm is generating a schedule
step-by-step and a deadlock is created after performing action at position p, the
algorithm will not find any feasible tasks that can be performed at position p+1.

For this reason, we enhance the greedy algorithms to backtrack if they get
stuck in a deadlock. We use the following two greedy criteria for choosing the
next transportation task:

– Pick a valid transportation task that the AGV can start earliest. This is the
travel time from the current location of the AGV to the pick-up location for
the task and the eventual waiting time for the job to finish processing.

– Pick a valid transportation task (i, k) that the AGV can complete the earli-
est. This the time needed to start the task (the greedy criterion above) plus
the travel time d(i, next(i, k)).

We refer to the greedy algorithms as GreedyStart and GreedyFinish, respec-
tively. In our experimental evaluation, GreedyStart consistently outperforms
GreedyFinish (for around 25 different instances, GreedyStart performed the
same or better than GreedyFinish in 23 instances, and in the other 2 cases,
it was at most 0.4 percent worse; for the lack of space we do not display the ex-
act comparison). In the remainder of the paper, we chose to only use GreedyStart
when using a greedy algorithm.

4.3 Iterative Nested Monte-Carlo Search

Iterative Nested Monte-Carlo Search (INMCS) alorithm iteratively performs
multiple runs of Nested Monte Carlo Search (NMCS) [7, 1], which is an algorithm
designed to improve efficiency of search processes when no effective heuristic is
available to guide such search. Our problem involves searching for a close-to-
optimal schedule, which NMCS achieves by iteratively generating the schedule
task-by-task. This is accomplished by generating several schedules randomly or
following a heuristic and by keeping track of the tasks that were performed by
the best performing generated schedule. This schedule generation is performed
on multiple levels, where the higher level stores the best solution found on the
lower level. Specifically, Algorithm 1, adapted from [7], describes the basic im-
plementation of the Nested Monte-Carlo Search (NMCS), where

– task is the transportation task that is currently executed,
– play(p, t) executes a given task t at a given position p in the schedule,
– sample(play(p, t)) after a transportation task has been executed at position

p, sample() generates the full schedule from p+1 and returns its makespan.

INMCS iteratively performs several runs of the NMCS algorithm until the
result converges. Moreover, in our implementation, the best found solution in
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Algorithm 1 Nested Monte Carlo Search with input (position, level)
1: bestScore← −1
2: while time is available and schedule is not fully generated do
3: if level = 1 then
4: task ← argmaxtasks(sample(play(position, task)))
5: else
6: task ← argmaxtasks(nested(play(position, task), level − 1))
7: end if
8: if score of task > bestScore then
9: bestScore← score of task

10: bestSequence← sequence after task
11: end if
12: bestTask ← task of bestSequence
13: position← play(position, bestTask)
14: end while
15: return bestScore

the previous run of the NMCS algorithm is assigned as best sequence in the
next run.

In our implementation, the sample() method is implemented by employing an
ϵ-greedy strategy, which works as the GreedyStart algorithm described in Section
4.2 with the exception that it performs a random valid task with probability ϵ.
We chose the value of ϵ to be 0.1 experimentally, among candidate values 0.1,
0.3, 0.5, and 0.7. We set the value of the highest level to 2.

4.4 Local Search

Local search (LS) receives as input a valid schedule, called starting schedule and
iteratively tries to improve it by changing the position of few transportation tasks
in the schedule. Concretely, given a valid schedule S, our local search approach
creates for every position p and every position p′ > p a schedule Sp,p′ that moves
task from position p′ to position p, and moves task from position p to the first
position after p that makes the new schedule valid. Naturally, local search keeps
the best schedule among S and all the generated schedules, and iterates.

5 Experiments

In all our instances, workstations are positioned on a straight line, and the travel
times between two consecutive workstations determine the travel time between
any two workstations (simply as the sum of all travel times in between).

We consider two types of travel times – fixed travel times and random travel
times. The so-called fixed travel times refer to the scenario where every travel
time between consecutive workstations is five minutes. These travel times are a
good estimate of a real-world scenario from company VDL Nedcar. For random
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travel times, we generate travel times uniformly at random, constrained such
that the total travel time from station 0 to station m+1 is at most 30 minutes.

We experiment with single job-type instances and multiple job-type instances.
All the experiments were run on a laptop with 8GB of RAM and with an 11th
generation quad-core Intel i5 CPU.

Single Type of Jobs. We consider several settings, varying in the number of
jobs, the number of stations, and the distances between the stations; see Section 6
for details. For every considered setting, we generate 5 random instances by
selecting the processing time at every workstation uniformly at random from
the interval [1, 15], and for every tested algorithm, we average the results of the
algorithm on the five instances.

We measure the performance of the ILP formulation (best objective value),
GreedyStart, INMCS, and a time-window heuristic (TW) from [4]. Finally, we
also tested Local Search. Each algorithm was given a maximum time of five min-
utes to return a solution. The TW heuristic iteratively solves ILP formulations
of subproblems induced by the iterations. The total limit of five minutes was
equally distributed among the subproblems; any remaining time from current
iteration was further redistributed equally among subsequent iterations.

Multiple Types of Jobs. For the setting with multiple types of jobs, we have
different workstation paths Pk, k = 1, . . . , t, per type k, and also, for every
station i, different processing times proc(i, k) per job type k.

We consider settings with various total number of jobs: smaller instances, up
to 20 total jobs, had two types of jobs. The proportions of the number of jobs
per each job type were 25% and 75%, respectively; larger instances, with 33 and
99 total jobs, respectively, had three types of jobs. We generated instances where
jobs were split equally per job type, and we also generated instances where jobs
were split uniformly at random per job type, with the condition of having at
least one job per type.

We further made experiments with workstation paths that do not form cy-
cles (and thus a deadlock cannot appear), and workstation paths that do form
cycles (and thus a deadlock can appear). For each such setting (with or with-
out deadlock), we generated paths uniformly at random twice, and averaged the
results over the generated paths. (For each such generated paths, we generated
five random instances – the processing times – and averaged the results.)

For multiple job-types setting, we tested all algorithms but TW, as TW is
a heuristic for a single job-type setting. We tested the algorithms with five and
fifteen minutes time-limit.

6 Results

The results of the experiments for the setting with a single-job type are displayed
in Table 1. The results of the experiments for the setting with multiple-job
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types are presented in Tables 2, 3, and 4. In the column with the name of the
algorithm (INMCS, ILP, etc.), we report the average difference (in percentage)
of the makespan found by the respective algorithm compared to the average
makespan found by GreedyStart. So, a negative difference means, on average,
a better (smaller) makespan. We do not report the results for the local search
algorithm, as it did not improve upon the greedy heuristic in any of the instances
of the single-type setting, and the average improvement for the multiple-types
setting varied between 0.1% and 2%, while often spending over two minutes of
runtime, compared to the below-second runtime of the greedy algorithm.

Every row reports the average performance of the algorithms in a concrete
setting (defined by the number of jobs, the types of distances, number of types,
etc.). The first column describes whether the inter-station distance are uniform
(label “fix 2,5”) or random (label “rand”). The label “fix 2,5” further tells that we
ran experiments where the uniform distance is 2, and we ran experiments where
the uniform distance is 5. The label “D” describes that the generated paths form
a cycle (and thus a potential deadlock"), and the label “ ̸D” describes that the
generated paths cannot form a deadlock. The column labeled |Pk| describes the
length of the generated workstation paths used in the respective experiment. For
example, in Table 2 the label [3, 5][3, 3] means that we ran experiments with path
lengths 3 and 5, and also experiments with path lengths 3 and 3, and report one
average of the obtained results. In Tables 3 and 4 for settings with three types
of jobs only one length is reported as both sets of paths had the same length.
The column n in the same tables reports the total number of jobs (of all types)
in the setting.

An asterisk in a cell means that in at least one of the instances for that
row, the respective algorithm did not find a valid schedule. An asterisk without
a number next to it means that the algorithm did not find a schedule for all
instances.

6.1 Results for single type setting

From Table 1, we observe that GreedyStart and INMCS are able to find an
optimal solution for small instances (it matches the solution found by the ILP
formulation). The TW-heuristic struggles to find the optimal solution but its
difference in performance is negligible for the first small instances. With larger
number of stations and jobs INMCS shows its power by constantly outperform-
ing GreedyStart. Its performance is particularly notable in settings with a high
number of workstations but small number of jobs.

INMCS and also GreedyStart strongly outperforms the TW-heuristic on
larger instances; TW manages to get a better performance than the greedy on
instances with 6 or 10 stations and small amounts of jobs (even better than IN-
MCS), however it performs poorly, compared to the greedy, on larger instances
or it even does not manage to find a solution within the time limit.

Algorithms were quick for small instances (< 10s for INMCS, < 1s for TW
and ILP) but ILP gets soon to 5 minutes once the amount of machines or jobs
increase, similarly to TW. Runtime of INMCS also grows quickly with the size
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Table 1. Comparison to the GreedyStart (difference to makespan) in a single-type
setting. There are either fixed distances in between machines (fix + distance amount)
or random distances (rand).

Setting |Pk| n INMCS% TW% ILP%
fix 2,5 2 5 0.0 0.8 0.0

20 0.0 0.0 0.0
35 0.0 0.0 0.0

6 5 -11.2 -9.2 -13.0
20 -3.6 17.2* 24.0*
35 -6.0 * 9.1*

10 5 -15.3 3.1 -7.8
20 -10.3 * *
35 -9.7 * *

rand 2 5 0.0 0.0 0.0
20 0.0 0.0 0.0
35 0.0 0.0 0.0

6 5 -8.2 -7.5 -14.5
20 -10.8 0.5* 4.0*
35 -8.3 -8.1* *

10 5 -25.6 2.5 -10.0
20 -16.5 * *
35 -11.9 * *

of the instances, but on instances with a lot of jobs and few machines it manages
to get a reduced runtime (40 secs with 10 machines and 5 jobs) compared to the
other algorithms. It seems from the experiments that the runtime of the ILP is
mainly affected by the increase in the number of workstations, as it reaches the
time limit from the first instance with a higher number of them, even with a
small number of jobs. A similar phenomenon happens to the runtime of INMCS,
but here the increase in computational time is much larger for higher numbers of
jobs than higher number of machines. The runtime of TW is shorter compared
to the ILP, however, INMCS manages to converge fast and find a better solution.

6.2 Results for multiple types setting

From Tables 2, 3, and 4 we observe that in almost every setting INMCS signifi-
cantly outperformed GreedyStart. For relatively small instances the ILP found
optimum solutions (while INMCS did not), but on larger instances, ILP often
struggled to find a feasible solution. This shows one advantage of INMCS, it
always finds a feasible solution, and often better ones than a greedy approach.
Nevertheless, the runtime remains a challenge as GreedyStart always generates
a solution within one second, even in settings where deadlocks can happen, while
INMCS requires more than 30-40 minutes to converge on larger instances. This
runtime increases even more if we used more levels.

From the results, we can see that the possibility of deadlocks did not impact
the performance of INMCS, as it effectively returned a solution without them,
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Table 2. Comparison to GreedyStart (difference in makespan) with two types of jobs.
Maximum available computation time was 5 minutes.

Setting |Pk| n INMCS% ILP%
fix 2,5 ̸D [3,5][3,3] 5 -8.3 -18.2

20 -6.8 0.7
fix 2,5 D [6,5][4,3] 5 -7.7 -13.5

20 -6.5 4.1*
rand ̸ D [3,5][3,3] 5 -9.8 -20.0

20 -6.5 1.8
rand D [6,5][4,3] 5 -10.2 -14.1

20 -6.2 3.3*

although with slight performance differences. To the contrary, the ILP often
failed to yield a solution when deadlocks can appear. This difference is also
reflected in the makespan of its solutions. One recurring phenomenon is that
INMCS does not manage to outperform the greedy for instances with large
amounts of jobs, random inter-station distances, and possibility of deadlocks.
This requires more investigation in future research.

While not in any of the tables, we note that local search performed poorly,
achieving marginal improvements between 0.1% and 2% over the greedy.

With respect to the runtime, ILP struggles even more than for the single-type
setting, while NMCS (and also LS) on small instances takes seconds to converge.
Deadlocks pose another challenge for all three algorithms, but especially for ILP
which runs from 15 seconds in settings without deadlocks (on smaller instances)
to 130/150 seconds in settings with deadlocks (on smaller instances). It always
takes the full available 5 minutes to find a solution for 20 jobs. Local search again
takes more time than NMCS (4 vs. 1 secs) for small instances but then much less
with 20 jobs (17 vs. 100/200 secs). Also NMCS struggles more in settings with
deadlocks (computation time almost doubles). On even larger instances (with 5
minutes of allowed runtime and 3 types of jobs) INMCS takes the full 5 minutes
while LS takes 100/200 seconds with 33 total jobs and 5 minutes with 99 jobs.
With 15 minutes of allowed runtime INMCS takes full 15 minutes but LS takes
400/500 seconds for 99 jobs. In both cases ILP was not able to find any solution
for 99 jobs (just generating the model took too much time) and took full 5 and
15 minutes with 33 total jobs.

7 Conclusions

In this paper we studied a job-shop setting with few types of jobs, where the jobs
need to be transported between the workstations by a single AGV of capacity
one, and studied the optimization problem of scheduling the AGV to minimize
the makespan.

We observed that an ILP formulation, while guaranteeing an optimum sched-
ule, does not find a solution within few minutes even for relatively small in-
stances, even when using commercial state-of-the-art ILP solvers. To solve the
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Table 3. Comparison to GreedyStart (difference in makespan). Maximum allowed
computation time is 5 min.

Setting |Pk| n INMCS% ILP%
fix 2,5 ̸D [5,5,5] 33 -7.9 310.5*

99 -3.3 NA
fix 2,5 D [6,6,6] 33 -5.2 *

99 -0.2 NA
rand ̸D [5,5,5] 33 -12.2 *

99 -6.0 NA
rand D [6,6,6] 33 -7.2 *

99 0.9 NA

Table 4. Comparison to GreedyStart (difference in makespan). Maximum allowed
computation time is 15 min.

Setting |Pk| n INMCS% ILP%
fix 2,5 ̸D [5,5,5] 33 -8.7 36.5*

99 -3.6 NA
fix 2,5 D [6,6,6] 33 -5.5 298.9*

99 -1.1 NA
rand ̸D [5,5,5] 33 -13.2 3.5*

99 -6.5 NA
rand D [6,6,6] 33 -8.2 *

99 0.3 NA

problem in practice, heuristics are used. We designed a heuristic based on the
Iterative Nested Monte-Carlo Search technique to address the practical problem.
INMCS iteratively performs multiple runs of Nested Monte-Carlo Search to find
solutions. We compared INMCS with greedy algorithms, and also local search
applied as a post-processing to solutions found be the greedy algorithms.

Our experimental evaluation show that INMCS consistently outperforms all
considered algorithms within the given run-time bounds of 5 or 15 minutes,
especially when the input instances get larger. Noteworthy, for settings with a
single job-type, INMCS also outperforms the time-window ILP-heuristic of [4].

For future research we would like to compare our INMCS implementation
with other single-agent Monte-Carlo Search approaches such as SP-MCTS [24],
NRPA [22] or NMCTS [2].
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