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Abstract. In many applications of supervised learning the response
variable is known a priori to be increasing (or decreasing) in one or more
of the features. Such relations between response and feature are called
monotone. Monotonicity may also be a desirable property of a decision
model for reasons of explanation, justification and fairness. Because the
monotonicity constraint is quite common in practice, many data analysis
techniques have been adapted to be able to handle such constraints. For
example, several algorithms have been developed for learning monotone
decision trees. These algorithms, however, only consider splits on single
features, giving rise to axis-parallel splits, and a partitioning of the fea-
ture space into rectangular areas. Oblique decision trees also allow linear
combination splits, and may therefore produce more compact models,
but no algorithms exist to enforce monotonicity for this more complex
partitioning of the feature space. We present such an algorithm and eval-
uate its performance through experiments on artificial as well as real life
data.

Keywords: classification trees · regression trees · monotonicity con-
straints · oblique decision trees

1 Introduction

In many applications of supervised learning the response variable is known a
priori to be increasing (or decreasing) in one or more of the features. For ex-
ample, all else equal, companies with a higher debt ratio are more likely to go
bankrupt (increasing relationship), and used cars with a higher mileage are less
expensive (decreasing relationship). Such relations between response and feature
are called monotone. Monotonicity may also be a desirable property of a decision
model for reasons of explanation [10], justification and fairness. For example, it
would be considered unfair if applicant A scores better than B on all criteria, but
B receives the more favorable decision. Since in monotone models the relation
between a feature and the response is either increasing or decreasing, regard-
less of the values of the other features, it is easier to isolate the features that
contributed to, or counteracted, a change in the response. This makes it easier
to provide (contrastive) explanations of model decisions. Moreover, monotonic-
ity may improve model acceptance by domain expert. For example, Pazzani et
al.[11], show that rules learned with monotonicity constraints were significantly
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more acceptable to medical experts than rules learned without the monotonicity
restrictions.

Because the monotonicity constraint is quite common in practice, many data
analysis techniques have been adapted to be able to handle such constraints. For
example, several algorithms have been developed for learning (partially) mono-
tone decision trees, see e.g. [17,2,1,12]. These algorithms, however, only consider
splits on single features, giving rise to axis-parallel splits, and a partitioning of
the feature space into rectangular areas. Oblique decision trees also allow lin-
ear combination splits, and may thus produce more compact models. Pei et al.
[13] present an algorithm for monotone oblique decision trees, but their algo-
rithm does not guarantee a globally monotone model. Only local monotonicity
(monotone splits) is enforced, but as the authors themselves note, a tree with
locally monotone splits can still be globally non-monotone. This is illustrated
in figure 1. In this figure, the splits are numbered, where split 1O is the split in
the root node. All points below that line are initially assigned to class 0, and all
points above the line are initially assigned to class 1. This split does not create
any monotonicity violations (smaller points getting a higher label than larger
points). Split 2O further splits up the area below the line, and split 3O further
slits up the area above the line. Splits 2O and 3O are locally monotone as well,
but the combination of splits produces a globally non-monotone prediction rule
because ultimately, some smaller points get assigned a higher class label than
some larger points. It should be noted that this behavior can also occur in trees
with exclusively axis-parallel splits. To make the tree globally monotone, one
could for example relabel the smaller area labeled 1 to 0, which would effectively
prune away the second split.

x2

x1

0

1
0

1

1

3

2

Fig. 1: Locally monotone splits that produce a globally non-monotone tree in a
binary classification problem. The splits are numbered, where the split in the
root node has number 1O. See the text for further explanation.
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The novel contribution of this paper is that we present the first algorithm
that is able to enforce global monotonicity for oblique decision trees.

This paper is organized as follows. In section 2 we introduce a number of basic
concepts and notation. Section 3 describes the proposed algorithm for learning
monotone oblique decision trees. We evaluate the predictive performance of the
algorithm on artificial and real data sets in section 4. Finally, section 5 concludes.

2 Preliminaries

Let X be a feature space X = X1 × X2 × · · · × Xp consisting of vectors x =
(x1, x2, . . . , xp) of values on p features. We assume that each feature takes values
xi in a linearly ordered set Xi. Assuming an increasing relation between each
feature and the response, the partial ordering� on X is defined to be the ordering
induced by the order relations of its coordinates Xi:

x = (x1, x2, . . . , xp) � x′ = (x′1, x
′
2, . . . , x

′
p)⇔ ∀i : xi ≤ x′i.

Note that if there is instead a decreasing relationship between a feature and
the response, we can simply invert the feature values to obtain an increasing
relationship.

A monotone prediction rule is a function f : X → IR for which

x � x′ ⇒ f(x) ≤ f(x′) (1)

for all instances x,x′ ∈ X .
A data set {xi, yi}ni=1 is monotone if for all i, j we have xi � xj ⇒ yi ≤ yj .

We say two data points xi and xj are comparable if one dominates the other,
that is, if xi � xj or xj � xi. Otherwise they are incomparable. Note that for a
pair of incomparable points, the constraint in equation (1) is vacuously satisfied,
since the antecedent is false.

Next, we define the isotonic regression [15], which is used in the sequel to
make trees globally monotone. Let Z = {z1, z2, . . . , zm} be a set of constants and
let � be a partial order on Z. Any real-valued function f on Z is isotonic with
respect to � if, for any z, z′ ∈ Z, z � z′ implies f(z) ≤ f(z′). We assume that
each element zi of Z is associated with a real number g(zi); these real numbers
typically are estimates of the function values of an unknown isotonic function on
Z. Furthermore, each element of Z has associated a positive weight w(zi) that
typically indicates the precision of this estimate. An isotonic function g∗ on Z
now is an isotonic regression of g with respect to the weights w and partial order
� if and only if it minimizes the sum

m∑
i=1

w(zi)[f(zi)− g(zi)]
2 (2)

in the class of isotonic functions f on Z. In words, g∗(z) makes the smallest
possible adjustments to the given values g(z) (in a weighted least squares sense)
so as to make the result monotone with respect to the given partial order. It has
been shown that g∗ exists and is unique [15].
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3 Monotone Oblique Decision Trees

In this section we describe the main components of the proposed algorithm
for learning monotone oblique decision trees. The current implementation is re-
stricted to binary classification and regression. Ordinal classification with more
than two classes is left for future research. For purposes of experimental com-
parison, we consider both local and global monotonicity constraints. The local
constraint was proposed by Pei et al. in [13]. Implementation of the global con-
straint is our new contribution. Since each constraint (local or global) can be
either enforced or not, the algorithm can run in 4 different constraint configura-
tions.

3.1 Tree Growing

The splits considered in each node are as follows:

1. If there is no local monotonicity constraint, compute ŷ = w0 + w>x using
ordinary least squares (OLS), and create the linear combination variable
w>x.

2. If there is a local monotonicity constraint, compute ŷ = w0 + w>x using
non-negative least squares, and create the linear combination variable w>x.

3. For each feature x (including the derived linear combination variable), con-
sider the splits (x ≤ b, x > b), where b is any value halfway in-between two
consecutive data values of x in their sorted order.

It should be noted that in the case of binary classification (y ∈ {0, 1}),
the OLS estimates w are proportional to the weights of the linear discriminant
function [8]. Since the intercept w0 is ignored altogether, this means we obtain
the same optimal split on the derived variable for OLS and linear discriminant
analysis (LDA). Also note that the only effect of the local constraint is that non-
negative least squares regression is used instead of OLS to construct the linear
combination split. This means that all coefficients in the linear combination
are restricted to be positive. Typically, this leads to less complex splits, since
features that would get a negative coefficient using OLS tend to drop out (get a
zero coefficient) using non-negative least squares.

For binary classification we use the gini-index impurity function. For regres-
sion problems we use the sum of squared deviations from the mean as impurity
measure. We perform the split that maximizes impurity reduction.

The minimum number of observations required in a node for it to be allowed
to be split is set to 2, so tree growing tends to produce a (highly) overfitted tree,
denoted by Tmax.

3.2 Enforcing Global Monotonicity

Consider a tree T that has been grown on the training data. The usual rule
is to predict the mean response in the leaf nodes of the tree. This prediction
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rule may however not be monotone, that is, it may fail to satisfy equation (1).
Our approach is to make it monotone by adjusting the leaf predictions as little
as possible (in the weighted least squares sense of equation (2)). To do so, we
first have to establish all violations of monotonicity between predictions made
in pairs of leaf nodes. A pair of leaf nodes (t, t′) violates equation (1) if

1. There are x ∈ t, x′ ∈ t′ such that x � x′, and
2. ȳ(t) > ȳ(t′),

where ȳ(t) denotes the mean y value of all cases that fall into node t. In non-
oblique decision trees, the first condition is easily verified by recording the
minimal and maximal elements of each node (rectangle), and testing whether
min(t) ≺ max(t′) [17].

This is no longer possible in oblique trees. In an oblique tree, a leaf node
corresponds to a set of linear inequalities of the form: w1x1+w2x2+. . .+wpxp ≤ b
or , w1x1 +w2x2 + . . .+wpxp > b. Note this corresponds to an axis-parallel split
if all weights but one are equal to zero. Leaf nodes contain the points x that
satisfy all inequalities on the path from the root node to the leaf. Hence, to
verify the first condition, we have to determine whether or not a collection of
linear inequalities has a solution. The constraint satisfaction system we use for
this purpose is an API, written in Python, which is based on a high performance
theorem prover called Z3 [6].

Let T̃ denote the collection of leaf nodes of tree T , ȳ(t) the average y value
of all observations that fall into node t (the unconstrained prediction in node t),
and n(t) the number of observations that fall into node t. Let us write t - t′ if
there exist x ∈ t, and x′ ∈ t′ such that x � x′. If there is a monotonicity violation
between any pair of leaf nodes, that is, t - t′ and ȳ(t) > ȳ(t′), monotonicity is
restored by adjusting the leaf predictions as little as possible. This is achieved
by performing the isotonic regression on (Z = T̃ ,-) with values g(t) = ȳ(t) and
weights w(t) = n(t). We use the generic notation ŷ(t) for the prediction made
in node t. Note that the number of observations falling into a leaf node is used
as a weight in the weighted sum of squares error function in equation (2). For
example, if two leaf nodes, t and t′, violate monotonicity, and setting

ŷ(t) = ŷ(t′) =
n(t)ȳ(t) + n(t′)ȳ(t′)

n(t) + n(t′)

would make the tree monotone, then this would be the solution produced by
the isotonic regression: their weighted average is assigned to both leaf nodes. In
general, the isotonic regression will partition the set of leaf nodes into a number
of blocks on which the solution is constant and equal to the weighted average of
the predictions of the leaves contained in that block.

Note that the relation - on the leaf nodes is actually not a partial order,
since it is neither transitive, nor antisymmetric. We can however afford this slight
abuse of notation, since the isotonic regression will automatically satisfy the
transitive closure of -, and hence we can refrain from stating these constraints
explicitly. The complexity of the isotonic regression algorithm we used [16] is
O(|T̃ |3).
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3.3 Pruning

To avoid overfitting, we apply cost-complexity pruning [4]. This yields the prun-
ing sequence:

T1 < T2 < · · · < {t1},

where each tree in the sequence is a pruned subtree of the previous one, T1 is
the smallest pruned subtree of Tmax with the same in-sample prediction error,
and t1 is the root node. The best tree from this sequence is selected through
cross-validation. If global monotonicity is required, the following procedure is
applied to the selected tree:

(1) If there is a monotonicity violation, make the tree monotone by performing
the isotonic regression as described in section 3.2. Otherwise stop.

(2) In case of a binary classification problem:

(a) Every pair of leaf nodes (t`, tr) with common parent t that predict the
same class label (i.e. ŷ(t`) and ŷ(tr) are on the same side of 0.5) is pruned
back to its parent. The parent t gets assigned prediction ŷ(t) = ȳ(t).

(b) Return to step (1).

There is a choice of when to enforce the global constraint in the model selection
process. Here, we have chosen to first select the tree from the pruning sequence
with lowest cross-validation error, and only then make this tree monotone. An-
other option is to first make every tree in the pruning sequence monotone, and
then select the tree with lowest cross-validation from the resulting sequence. The
latter option is obviously computationally more expensive.

4 Experimental Evaluation

In this section we present the results of the experiments we performed on arti-
ficial binary classification data (section 4.1), real regression data (section 4.2),
and real binary classification data (section 4.3). To study the separate effects
of enforcing the local and global monotonicity constraint, we run the tree al-
gorithm in four different configurations. It should be noted that enforcing the
local monotonicity constraint only means that the weights in the linear combina-
tion splits are determined by non-negative least squares instead of ordinary least
squares. This avoids linear combination splits containing weights with opposite
signs, that would force one to predict the same value in both child nodes to pre-
vent a monotonicity violation. In addition, we would like to point out that we
only consider relatively small training sets in the experiments, because for large
data sets the monotonicity constraint (if correct) will almost always be satisfied
already by the unconstrained model. Hence, we only expect a better predictive
performance for relatively small training samples.
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4.1 Artificial Data

To study the relationship between properties of the data and algorithm per-
formance, we generate artificial data for the binary classification problem. The
artificial data sets are constructed in two phases. First, a data set without labels
is generated, and then random monotone labelings per data set are produced
such that the label distribution is sufficiently balanced.

Three types of data sets are drawn from a multivariate normal distribution,
one with high positive (0.9) correlation between the features (from now on re-
ferred to as the positive dataset), one with zero correlation between the features
(the zero dataset) and one with high negative correlation (−0.9) between the
features (the negative dataset). For the latter, we create two groups of features
of the same size, such that the features are positively correlated (0.9) within
their group, but negatively correlated (−0.9) between the groups. The number
of features is either 2, 6 or 10. We generate a total of 2000 data points for each
combination of correlation value and number of features.
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(a) Positive correlation.
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(b) Negative correlation.
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(c) Zero correlation.

Fig. 2: Illustrative datasets of 100 data points and 2 features each, with different
degrees of correlation. The green dots are observations from class 1. The class
labels were randomly generated using the Propp-Wilson algorithm

For each set of data points, multiple random monotone labelings are gener-
ated using the Propp-Wilson algorithm with sandwiching [14]. Only the suffi-
ciently balanced labelings are used for the experiments: the relative frequency
of the majority class is allowed to be at most 60%. Note that the labeling has
no structure at all, apart from being monotone and sufficiently balanced. Each
labeled dataset is then split into a training set (of size 50, 100, or 150) and
a test set (all remaining data points). Figure 2 shows three example datasets
with different degrees of correlation, and monotone labelings generated with the
Propp-Wilson algorithm.

Next, we introduce non-monotone noise to the training sets and test sets.
The amount of noise is measured by the number of data points that need to be
relabeled to restore monotonicity, and is introduced as follows. First we find a
collection of comparable pairs with the same label. Consider such a pair (x,x′)
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with x � x′. If both labels are 0, we change the label of x to 1. Likewise, if both
labels are 1, we change the label of x′ to 0. By choosing the flipped pairs such
that they are mutually disjoint, it is guaranteed that the number of labels that
need to be flipped to restore monotonicity is precisely equal to the number of
labels that were flipped.

We flip the labels of 5% of the training set, respectively test set. We use
relatively small training sets of size 50, 100, and 150, because the monotonicity
constraint is likely to be more effective in those cases. For larger training sets,
the monotonicity constraint is more likely to be satisfied by the data based
(unconstrained) estimates already, in which case imposing the constraint won’t
make any difference.

Table 1 contains the accuracy on the test set of the different configurations
of the algorithm (LG, L̄G, LḠ and L̄Ḡ), different correlations (Positive, Zero,
Negative), number of features (2,6, and 10) and training set sizes (50, 100 and
150). Here L indicates that the local monotonicity constraint is enforced, and G
indicates that the global constraint is enforced.

From table 1 we conclude that, all else equal, accuracy tends to increase
with correlation between the features. For example, for LG with 2 features and
N = 150, the accuracies are (0.84, 0.90, 0.92), for negative, zero, and positive
correlation respectively. This is explained by the fact that the monotonicity con-
straint on the labels is more restrictive with positively correlated features than
with negatively correlated features, leading to a stronger correlation between
features and class label. This stronger correlation obviously leads to better pre-
dictive performance. This phenomenon is also suggested by the example data
sets shown in figure 2. To validate the observation that accuracy tends to in-
crease with correlation between the features, we conduct a statistical test. For
each fixed degree of correlation, there are 3 values for the number of features, 4
constraint configurations and 3 different training set sizes, constituting a total
of 36 accuracy values. We set α = 0.05. The p-value of the Friedman test [7]
is 1.04 × 10−14. The p-values of the post-hoc Nemenyi test establish that the
performance on positive datasets is significantly better than on zero or negative
datasets, and the performance on zero datasets is significantly better than on
negative datasets (p = 0.001).

Likewise, we note from table 1 that, all else equal, accuracy tends to de-
cline with the number of features. To give a pronounced example, if we look
at LG with N = 50, and no correlation between the features, the accuracies
are (0.88, 0.64, 0.51) for 2, 6, and 10 features respectively. This trend can be
explained by the same phenomenon, as more features means fewer comparable
pairs, with the consequence that the monotone labeling requirement imposes less
structure on the data. For each fixed number of features there are 3 degrees of
correlation, 4 constraint configurations and 3 different training set sizes, consti-
tuting a total of 36 accuracy values. The p-value of Friedman test is 2.32×10−16.
The p-values of the post-hoc Nemenyi test establish that the performance on 2
features is significantly better than on 6 or 10, and the performance on 6 features
is significantly better than on 10 (p = 0.001).
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Table 1: Test set accuracy for artificial datasets.

nfeat ntrain LG L̄G LḠ L̄Ḡ

50 0.8883 0.8831 0.8875 0.8822
Positive 2 100 0.9 0.9 0.9 0.9

150 0.921 0.917 0.921 0.917

50 0.86 0.74 0.86 0.84
Positive 6 100 0.873 0.678 0.872 0.858

150 0.87 0.61 0.87 0.86

50 0.8385 0.7017 0.8398 0.8125
Positive 10 100 0.85 0.64 0.85 0.83

150 0.86 0.58 0.86 0.83

50 0.8786 0.8776 0.8786 0.8781
Zero 2 100 0.892 0.892 0.891 0.891

150 0.9 0.9 0.9 0.9

50 0.643 0.56 0.641 0.629
Zero 6 100 0.655 0.63 0.655 0.657

150 0.6682 0.6495 0.6678 0.665

50 0.508 0.498 0.507 0.503
Zero 10 100 0.5174 0.5058 0.5134 0.5129

150 0.515 0.509 0.518 0.512

50 0.813 0.828 0.826 0.83
Negative 2 100 0.8455 0.8445 0.8444 0.8435

150 0.8417 0.8411 0.8434 0.8427

50 0.581 0.532 0.583 0.572
Negative 6 100 0.583 0.55 0.59 0.587

150 0.587 0.555 0.584 0.577

50 0.497 0.502 0.494 0.496
Negative 10 100 0.4945 0.5086 0.4971 0.4999

150 0.506 0.511 0.51 0.507

Table 2: The p-values of the post-hoc Nemenyi test for different constraint con-
figurations with n = 50 (left) and n = 150 (right).

LG L̄G LḠ

L̄G 0.052
LḠ 0.9 0.13
L̄Ḡ 0.26 0.88 0.46

LG L̄G LḠ

L̄G 0.082
LḠ 0.9 0.018
L̄Ḡ 0.46 0.77 0.18
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Comparing the performance of the four different constraint configurations
for training set size 50, we find the p-value of the Friedman test is 0.03. The
post-hoc Nemenyi test however could not find significant difference(s), see table
2 (left part), but we point out that the p-value of the test between LG and L̄G is
the smallest of all. Inspection of table 1 tells us that LG consistently has higher
accuracy than L̄G, except when correlation is negative.

Comparing the performance of the four different constraint configurations
for training set size 100, we find the p-value of the Friedman test is 0.31, so
we could not reject the null hypothesis that all four constraint combinations
perform equally well.

Finally, for training set size 150, the p-value of the Friedman test is 0.0053.
See table 2 (right part) for the p-values of the post-hoc Nemenyi test. Here, only
enforcing the local constraint (LḠ) is significantly better than only enforcing the
global constraint (L̄G).

4.2 Real Regression Data

Table 3 lists the regression datasets used in the experiments, together with their
number of observations and features after pre-processing.1 We selected features
for which the monotonicity constraint was plausible based on common sense, or
consensus within the application domain. The expected signs of the monotonicity
constraints were confirmed by inspecting the signs of the coefficients in a linear
regression fitted to the data [9]. To illustrate, we consider the Wages dataset.
The target attribute of this dataset is the hourly wage in dollars of a person.
The selected features are “educ” (years of education), “exper” (years of potential
labor force experience), “tenure” (years with the current employer), “female” (1
if female, 0 otherwise), “nonwhite” (0 if white, 1 otherwise), “numdep” (number
of dependents), and “married” (1 if married, 0 otherwise). We expected, “fe-
male” and “nonwhite” to have a decreasing monotone relation with the target,
which was confirmed by their negative coefficients in the linear regression model.
They have therefore been inverted to “male” and “white”. This way, all selected
features are expected to have an increasing monotone relation with the target.

Table 4 shows the MSE for all constraint combinations, for training set sizes
50, 100, and 150 respectively.

We note that in general the combined application of the local and global
constraint performs best: it has the lowest MSE in 4 out of the 6 datasets (for
train set size 100 even 5 out of 6). The results confirm the utility of the local
constraint, as the combinations that do not apply the local constraint never win

1 The pre-processed datasets and Python code can be found on https://github.com/

ZazeyManda/IDT-oblique.git
2
https://www.kaggle.com/datasets/akshaydattatraykhare/data-for-admission-in-the-university

3
https://www.kaggle.com/datasets/uciml/autompg-dataset

4
http://qed.econ.queensu.ca/jae/2006-v21.3/stengos-zacharias/

5
https://jse.amstat.org/jse_data_archive.htm

6
https://rdrr.io/cran/wooldridge/man/wage1.html

7
https://www.kaggle.com/datasets/photosho/house-prices-for-the-city-of-windsor-canada

https://github.com/ZazeyManda/IDT-oblique.git
https://github.com/ZazeyManda/IDT-oblique.git
https://www.kaggle.com/datasets/akshaydattatraykhare/data-for-admission-in-the-university
https://www.kaggle.com/datasets/uciml/autompg-dataset
http://qed.econ.queensu.ca/jae/2006-v21.3/stengos-zacharias/
https://jse.amstat.org/jse_data_archive.htm
https://rdrr.io/cran/wooldridge/man/wage1.html
https://www.kaggle.com/datasets/photosho/house-prices-for-the-city-of-windsor-canada
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Table 3: Regression datasets after preprocessing.
Dataset N nfeat

Admission2 400 5

AutoMPG3 392 7

Computer4 6259 9

Kuiper5 804 5

Wages6 526 7

Windsor7 546 11

Table 4: Test set MSE for regression datasets.

n LG L̄G LḠ L̄Ḡ

50 0.0072 0.0114 0.0093 0.0109
Adm. 100 0.0055 0.0072 0.0073 0.0070

150 0.0056 0.0072 0.0062 0.0066

50 17.53 26.08 17.53 18.38
Auto 100 11.29 25.38 11.29 12.02

150 11.99 60.65 10.55 12.2

50 142200 351550 212403 218503
Comp. 100 94112 106919 97988 116586

150 87466 92163 88271 95291

50 101475000 103377100 64724450 69963970
Kuip. 100 106261200 85241970 49858290 50385930

150 103304700 103198100 40536170 38513820

50 10.86 34.46 10.74 13.03
Wage 100 9.14 14.33 9.7 13.3

150 9.11 16.83 9.41 10.61

50 363860200 420322200 412652000 574990300
House 100 311893800 415459900 325382200 413842200

150 284492000 334268700 299826600 335350300
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(the only exception being Kuiper with n = 150). The second best option is to
apply the local, but not the global constraint, which wins (or ties for a win)
6 times in total. All in all, we conclude that application of the monotonicity
constraints is beneficial.

Comparing the 4 constraint configurations for a training set size of 50, the
p-value of the Friedman test equal to 0.0035. As this is smaller than α = 0.05,
it implies that there is a statistically significant difference between some MSE
values. See table 5 (left) for the results of the post-hoc Nemenyi test. We can
conclude that there is significant difference between configurations L̄G and LG.
If we look at the individual MSE values for both configurations in table 4, we
can conclude that the MSE values are smaller for LG and thus it performs
significantly better than the L̄G. Similarly, configuration L̄G is significantly
worse based on MSE than LḠ. From this, we infer that the local monotonicity
constraint is more critical than the global constraint. Even though we found no
significant difference, we still see that the MSE of configuration LG is lower than
the MSE of L̄G.

For a training set size of 100, the p-value of the Friedman test is equal to
0.051. This is larger than our α and thus we cannot reject H0 in this case.

For a training set size of 150 the p-value of the Friedman test is 0.035. We
proceed with the post-hoc Nemenyi test to determine the significant differences,
see table 5 (right). Unfortunately, the post-hoc Nemenyi test could not find any
significant differences (α still at 0.05) between the MSE values. This is because
the test is known to be less accurate than the Friedman test [5]. We reject H0

but cannot give a conclusive answer which constraint configuration outperforms
another, although one can read from table 4 that LG has lower MSE values
than L̄G. So the local monotonicity constraint results in lower MSE on the test
sample.

Table 5: The p-values from the post-hoc Nemenyi test for regression with n = 50
(left), and n = 150 (right).

LG L̄G LḠ

L̄G 0.014
LḠ 0.9 0.014
L̄Ḡ 0.23 0.66 0.23

LG L̄G LḠ

L̄G 0.07
LḠ 0.9 0.11
L̄Ḡ 0.28 0.9 0.4

4.3 Real Binary Classification Data

Table 6 displays some basic information for the binary classification datasets,
after pre-processing, that we used in the experiments.8 We illustrate the pre-
processing performed by shortly discussing the Bankruptcy dataset. The class

8 The pre-processed datasets and Python code can be found on https://github.com/

ZazeyManda/IDT-oblique.git.

https://github.com/ZazeyManda/IDT-oblique.git
https://github.com/ZazeyManda/IDT-oblique.git
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label indicates whether a company went bankrupt (1) or not(0). The follow-
ing financial ratios were selected as features: ’Debt ratio %’, ’Current Liability
to Current Assets’, ’Cash Flow to Liability’, ’Net Income to Total Assets’ and
’Fixed Assets to Assets’. The sign of the monotonicity constraint was deter-
mined by consulting a book on corporate finance [3], and using common sense
reasoning. For example, ’Net Income to Total Assets’ is an indicator of a com-
pany’s profitability. A higher ratio suggests that the company generates more
profit relative to its total assets, indicating strong financial performance. Hence,
it stands to reason that there is a monotonically decreasing relationship between
this ratio and the probability that the company will go bankrupt. The signs for
the other ratios were derived in a similar fashion.

Table 6: Classification datasets after preprocessing.
number of proportion

Name N features class 1

Bankrupt9 440 5 0.50

Compas10 7214 4 0.45

Credit11 592 5 0.50

Haberman12 306 3 0.26

Water13 1824 9 0.50

Table 7 displays the accuracy on the test set, for each constraint combination,
and each training set size.

We witness the same phenomenon as with regression: the smaller the train-
ing set, the more prominent the effect of enforcing monotonicity constraints. For
example, for the Bankruptcy data, the difference in accuracy between LG and
L̄Ḡ is 5 percentage points for a training set of size 50, but for size 150 both
models perform equally well. Overall, it appears that enforcing both local and
global monotonicity (LG) gives the best performance. It is only beaten once by
another constraint configuration, and with only a minuscule difference. The ac-
curacies obtained on Haberman are rather unimpressive accross the board, since
predicting the majority class gives an accuracy of 74% already. This confirms
that tree based models have problems with skewed class distributions, and have
a tendency to prune back to the root node in such cases. On the Credit data
all constraint combinations perform equally well, largely because a split on the
single feature “Share” already leads to almost perfect separation of the classes.

9
https://www.kaggle.com/datasets/fedesoriano/company-bankruptcy-prediction

10
https://www.kaggle.com/datasets/danofer/compass

11
https://www.kaggle.com/datasets/dansbecker/aer-credit-card-data

12
https://www.kaggle.com/datasets/gilsousa/habermans-survival-data-set

13
https://www.kaggle.com/datasets/mssmartypants/water-quality

https://www.kaggle.com/datasets/fedesoriano/company-bankruptcy-prediction
https://www.kaggle.com/datasets/danofer/compass
https://www.kaggle.com/datasets/dansbecker/aer-credit-card-data
https://www.kaggle.com/datasets/gilsousa/habermans-survival-data-set
https://www.kaggle.com/datasets/mssmartypants/water-quality
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Table 7: Test set accuracy for classification datasets.

n LG L̄G LḠ L̄Ḡ

50 0.77 0.75 0.76 0.72
Bankrupt 100 0.82 0.5 0.82 0.81

150 0.82 0.82 0.82 0.82

50 0.644 0.62 0.636 0.549
Compas 100 0.669 0.549 0.669 0.67

150 0.64 0.64 0.6 0.62

50 0.95 0.95 0.95 0.95
Credit 100 0.99 0.99 0.99 0.99

150 0.98 0.98 0.98 0.98

50 0.72 0.72 0.71 0.71
Haberman 100 0.757 0.757 0.699 0.748

150 0.74 0.74 0.74 0.74

50 0.71 0.5 0.66 0.57
Water 100 0.674 0.5 0.638 0.633

150 0.77 0.77 0.77 0.77

Comparing the different constraint configurations statistically, we compute
that for n = 50 the p-value of the Friedman test is 0.039, meaning that we reject
H0 at α = 0.05. However, the p-values of the post-hoc Nemenyi test are all
greater than α. For training set sizes 100 and 150, the p-values are 0.26 and 0.39
respectively, and therefore we cannot reject H0.

5 Conclusion

We presented the first algorithm for learning globally monotone oblique decision
trees. To determine if a given tree is globally monotone it suffices to verify
the satisfiability of a set of linear constraints. If global monotonicity has been
violated, the algorithm uses the isotonic regression to adjust the predictions in
the leaf nodes.

Experiments on artificial and real data sets show that enforcing local and
global monotonicity tends to improve predictive performance for relatively small
training set sizes, but this advantage gets smaller and eventually disappears as
the size of the training set grows. This makes sense: if the constraints are correct,
then models trained on sufficiently large samples will already satisfy them. The
experimental results also suggest that combining both constraints works better
than each constraint on its own. Regardless of a possible improvement of predic-
tive performance, enforcing the global constraint may be a requirement from the
viewpoint of fairness, explanation, and model acceptance by the domain expert.

In future research, we will extend this work to ordinal classification problems
with more than two classes. Also, we plan to simplify the unconstrained linear



Monotone Oblique Decision Trees 15

combination splits, e.g. through regularization, since currently these splits can
become rather complex, possibly leading to overfitting.
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