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Abstract. Ensuring an even distribution of AI errors across social groups
is a key aspect of fairness: AI errors should not be systematically larger
or more frequent for specific social groups. For AI systems predicting nu-
meric values (i.e., regression problems), residuals are the primary error
metrics. Even or uneven distributions of residuals is a problem of homo-
or heteroscedasticity: a regression system is fair if its residuals are ran-
domly and homogeneously distributed (i.e., homoscedastic) for all social
groups (e.g., defined by sensitive features such as race or gender). Thus
modeling heteroscedasticity is important to identify fairness issues. We
focus on parametric methods for modeling the heteroscedasticity of resid-
uals, as their parameters facilitate human interpretation when identify
heteroscedasticity. State-of-the-art parametric methods model residuals’
heteroscedasticity use simple linear models. We demonstrate key limita-
tions of such approach, and how these limitations are can be addressed
by using polynomial models, and signed residuals for the most complex
cases. Polynomial models can address complex cases of heteroscedastic-
ity that would remained undetected using simple linear models. However,
interpreting their results is more complex, and future work is needed to
assess the impact of outliers and overfitting.

Keywords: Fair AI · Regression Problem · Heteroscedasticity.

1 Introduction

Algorithmic bias in artificial intelligence (AI) has become a prominent issue,
as cases discrimination have been arising in many applications [7, 12, 14]. In re-
gression problems, a form of bias is the heteroscedasticity of residuals: e.g., if
residuals are not uniformly distributed over the AI output, heteroscedasticity
is present. It means that the AI results are more inaccurate for specific data
points. Heteroscedasticity may present for data points belonging to a specific
social group, but absent for other social groups. This would create a fairness
issue and a risk of discrimination, as specific social group are impacted by larger
AI errors. Modelling heteroscedasticity with parametric models can be used for
identifying heteroscedasticity, by analysing the magnitude and statistical signif-
icance of their parameters.
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Current parametric methods use simple linear methods to identify heteroscedas-
ticity [2–6, 8]. Given AI results ŷ, and groundtruth values y, state-of-the-art
methods model the squared or absolute residuals as:

(ŷ − y)2 = β0 + β1x (1)

|ŷ − y| = β0 + β1x (2)

where β0 is the intercept, β1 the coefficient (also called slope), and x can be the
AI results ŷ, the groundtruth value y, a numeric sensitive feature (e.g., age), or
any of the numeric input features of the AI system. The presence of significant
non-zero slope indicates heteroscedasticity in the residuals’ distribution over
feature x.

However, this approach can overlook complex cases of heteroscedasticity (e.g.,
Fig. 1) resulting in compromised validity of the heteroscedasticity analyses [13].
We thus investigate the use of polynomial models compared to simple linear mod-
els. Polynomial models are particularly suited for capturing complex, non-linear
relationships between variables. We thus argue that we better model squared or
absolute residuals as:

(ŷ − y)2 = β0 + β1x+ β2x
2 + ...+ βnx

n (3)

|ŷ − y| = β0 + β1x+ β2x
2 + ...+ βnx

n (4)

where β0 is the intercept, β1 the coefficient of the linear term, β2, ..., βn the
parameters β of the polynomial terms. With polynomial models, any non-zero
coefficient indicate heteroscedasticity. To assume homoscedastic residuals, all
parameters β must be zero. It provides a stricter set of criteria that are sensitive
to more complex patterns of variability in the residuals.

(a) Degree 1 (b) Degree 4

Fig. 1: Example of heteroscedasticity in (simulated) residuals that is not identi-
fied with linear models (a) but can be identified with polynomial models (b).

Analysing complex cases of heteroscedasticity in AI errors with polynomial
models allows to better identify fairness issues, and to better estimate the un-
certainty of AI results. Thus it provides insights into the ethical implications of
biased AI systems, and the robustness of AI systems.

While homoscedastic residuals might be reasonably expected (e.g., as a con-
straint that guides the convergence of robust AI algorithms), it may not be the
case for specific data subsets. Heteroscedastic residuals may occur for specific
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(a) Symmetric residuals (b) Asymmetric residuals

Fig. 2: Example of heteroscedasticity in (simulated) residual that can be mod-
elled using squared or absolute residuals (a), or requires signed residuals (b).

data subsets (e.g., for data points with specific sensitive features), while remain-
ing generally homoscedastic for the whole dataset.

Complex patterns of heteroscedasticity may also remain undetected if squared
or absolute residuals are used (e.g., Fig. 2). Signed residuals allow to detect het-
eroscedasticity when positive and negative residuals have different distributions.
We thus model signed residuals as:

ŷ − y = β0 + β1x+ β2x
2 + ...+ βnx

n (5)

Selecting an appropriate heteroscedasticity model is essential to guarantee the
validity and completeness of AI bias analysis. To contribute to understanding
the applicability bias analysis methods, we study the applicability of linear and
polynomial models with the following research questions:
RQ1 How efficient are polynomial models for modelling heteroscedasticity?
RQ2 How to interpret polynomial models to identify fairness issues due to het-
eroscedasticity?
RQ3 How does using signed or absolute residuals impact the detection of het-
eroscedasticity?

We will assess the performance of polynomial regression models across dif-
ferent levels of complexity (i.e., polynomials of degrees 1 to 6), applied to the
dataset from Obermeyer et al. [12] where racial discrimination was identified.
We will review a wide array of evaluation metrics for each heteroscedasticity
model, and each of their coefficient (e.g., p-values, deviance). While our results
clearly demonstrate the advantages of using polynomial models, we cannot as-
sume that these models are sufficient to detect all forms of heteroscedasticity.
Other approaches to modelling complex heteroscedasticity remain unexplored,
e.g., parametric, non-parametric, or multivariate models with weighted sensitive
features.

2 Related Work

Fairness metrics in regression problems focus either on statistical parity (which
is not concerned with residuals) or loss-based (e.g., bounded group loss) which
uses squared residuals [1]. These do not account for heteroscedasticity, i.e., fair-
ness criteria may be satisfied while a protected group is more impacted by het-
eroscedasticity. Thus, with such approach an AI model may be considered fair
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while a protected group still suffers from systematically higher AI errors (e.g.,
for predicted values in [7.5, 12.5] in Fig. 1).

Heteroscedasticity can be identified with statistical tests of normality applied
to the residuals. However, this approach does not model the magnitude of het-
eroscedasticity, nor how it can impact protected groups differently, e.g., for data
points with specific predicted or actual values (ŷ or y).

Existing methods for modeling heteroscedasticity use linear models [2, 3,
8, 10]. A significant slope β1 (1-2) indicates heteroscedasticity. These methods
are not suited to identify all patterns of heteroscedasticity (e.g., Fig.1-2). These
methods are also impacted by the choice of residual measurement, e.g., abso-
lute, squared, or signed residuals (1-2). Squared residuals are frequently used,
but are sensitive to outliers and distort small residuals. To address some of these
limitations, other methods use absolute residuals as the dependent variable [4,
6]. These methods mitigate excessive outlier influence, and provide an alterna-
tive perspective on the residual distribution by focusing on the magnitude of
differences between observed and predicted values. However, complex patterns
of residuals may not be identifiable using neither absolute or squared residuals
(Fig. 2).

Su et al. [16] apply local polynomial regressions, fitting multiple polynomial
equations to different regions of the data. This method is non-parametric, thus
does not require prior knowledge of the form of the heteroscedasticity function.
Yet, it is applied exclusively to squared residuals, and only provide local mod-
els. In contrast, our approach provides global models of heteroscedasticity, and
address asymmetric patterns by using absolute residuals. Out approach also de-
creases the computational complexity, requires fewer data points, and is easier
to interpret.

Hsiao et al. [6] present a model to analyze complex financial data, incorpo-
rating various forms of heteroscedasticity such as linear, nonlinear, curvilinear
(e.g., polynomial regressions), and composition functions. However, this method
only uses squared residuals and its goal is to incorporating heteroscedasticity
into the initial AI model. In contrast, our work also is also applied to signed
residuals, and aims at identifying fairness issues with specific interpretations of
polynomial parameters β.

3 Method

We used the dataset studied by Obermeyer et al. [12] because it contains racial
bias creating fairness issues. It consists of a comprehensive collection of medical
information, and AI-generated scores used throughout the USA to determine
patient eligibility for a specialized healthcare program. Its data points represent
patients from two racial groups: black and white. Each patient has a detailed set
of medical information, including the variables number of active chronic illness,
and total medical expenditure spent in hospital treatments. Their AI-generated
risk scores range from 0 (low risk) to 100 (high risk), and are used to assess
their health status. When an individual’s risk score exceeds the 55th percentile,
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they are referred for screening by a medical professional who determines their
eligibility for the healthcare program. Patients with risk scores above the 97th
percentile are automatically admitted to the program.

Obermeyer et al. found significant biases when comparing signs of illnesses
(number of active chronic conditions) at a given risk score, showing that black
patients are considerably sicker than white patients at the same risk score. The
AI bias is due to using total medical expenses as a predictor, as black patients
often have less financial resources thus cannot afford to spend as much as white
patients.

We used this dataset to create 2 experimental use cases: regression prob-
lems predicting (1) number of active chronic conditions and (2) total medical
expenses, using risk score percentiles (Fig. 3). We analyzed the residuals from
these regression problems, to assess potential heteroscedasticity. If heteroscedas-
ticity is present, and impacts one race more than the other, a fairness issue is
identified. We researched the effectiveness of polynomial models to identify such
issues with heteroscedasticity.

(a) Chronic Illnesses case (b) Medical Expenditure case

Fig. 3: Experimental data drawn from Obermeyer et al. (2019)

To ensure clarity in graphical representations, we opted for a data aggregation
method akin to Obermeyer et al.’s approach, which entails the use of mean values
per risk score percentile. It is imperative to clarify that the results presented
in this paper do not directly mirror the levels of heteroscedasticity within the
original dataset. Rather, they offer an overview of polynomial regression models’
performance in addressing heteroscedasticity.

Experimental Data We calculated the mean active chronic illnesses and
the total medical expenditure per race and risk score percentile. This reduced
the dataset from 48785 to 400 data points: 100 data points per race and vari-
able (active chronic illnesses and the total medical expenditure). We then fit a
polynomial model with degree 3 to the data points (Fig. 3).

We modelled the heteroscedascity in our two experimental use cases with
polynomial regression of degrees 1 to 6, fitted with Ordinary Least Squares
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(OLS). We assessed the heteroscedasticity modelling using well established met-
rics: mean squared error (MSE), p-values for each coefficient, deviance, and
change in deviance between linear and polynomial models [11].

Deviance is calculated from the likelihood function, representing the proba-
bility of observing the residuals given the model’s parameters (β0, ..., βn). Higher
likelihood means that the observed residuals are more probable under that re-
gression model. The likelihood function L(β; r) is defined as the joint probability
of the observed residuals given the parameters β:

L(β; r) =

n∏
i=1

f(ri, r̂i, β)

where f(ri, r̂i, β) is the probability density function of the observed residuals
ri given the predicted residual r̂i and the model parameters β. We eventually
compare two models’ difference in deviance, thus deviance can be simplified as:

D = −2F (β; r)

where F (β; r) =
∑n

i=1 ln f(ri, r̂i, β) is the log-likelihood of the regression model.
The negative twice log-likelihood ensures that larger deviance indicates poorer fit
of the regression model. We examine changes in deviance [11] between a simple
linear model and a polynomial models as:

∆D = Dpolynomial −Dlinear

where Dlinear is the deviance of the baseline linear model and Dpolynomial the
deviance of a polynomial model. A negative ∆D suggests that the polynomial
model is capturing the distribution of residuals more efficiently. This analysis
helps select a model that strikes a balance between capturing the distribution
of the residuals and avoiding unnecessary complexity. When the difference in
deviance between two models is minimal, the simpler model may be preferable
due to its potential for improved generalisability.

Table 1: Deviance D and difference with baseline ∆D for Black and White races.
degree 1 2 3 4 5 6

Chronic Signed D 1.2·101 8.5 8.1 -4.2·101 -7.7·101 -9.5·101
Illness Residuals 1.1·102 1.1·102 1.1·102 9.9·101 9.9·101 9.7·101

∆D 0 -3.5 -3.9 -5.4·101 -9.0·101 -1.1·102
0 -2.7 -3.0 -1.1·101 -1.1·101 -1.3·101

Absolute D -4.4·101 -6.2·101 -1.0·102 -1.2·102 -1.3·102 -1.5·102
Residuals 1.1·101 7.7 5.0 4.7 2.7 -5.6

∆D 0 -1.8·101 -5.7·101 -7.5·101 -8.7·101 -1.1·102
0 -3.4 -6.1 -6.5 -8.5 -1.7·101

Total Signed D 1.8·103 1.7·103 1.7·103 1.7·103 1.7·103 1.7·103
Expenditure Residuals 1.9·103 1.9·103 1.9·103 1.9·103 1.9·103 1.8·103

∆D 0 -1.5·101 -3.0·101 -4.9·101 -7.3·101 -9.7·101
0 -9.0 -1.9·101 -2.8·101 -4.1·101 -6.4·101

Absolute D 1.8·103 1.7·103 1.7·103 1.7·103 1.7·103 1.7·103
Residuals 1.9·103 1.9·103 1.9·103 1.8·103 1.8·103 1.8·103

∆D 0 -2.0·101 -3.4·101 -5.5·101 -7.7·101 -1.1·102
0 -1.1·101 -2.7·101 -4.6·101 -6.6·101 -8.8·101
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4 Results

Table 1 shows the deviance values, and the difference in deviance (∆ D) with
to the baseline model (Degree 1), for both the Black and White races. Deviance
descreases when increasing the polynomial degree, indicating an improvement in
goodness of fit. However, the decrease in deviance for the Black race is smaller
than for the White race (especially for the Chronic Illness case). Thus the re-
lationship between polynomial degree and deviance reduction varies between
races. It indicates a variability in the predictive accuracy of the regression mod-
els across different racial groups. Regarding difference in deviance with baseline
model (∆D), it consistently decreases as the polynomial degree increases. This
indicates that the polynomial models are more accurate for modelling the resid-
uals and their heteroscedasticity.

4.1 Signed Residuals

Chronic Illness Case: Table 2 shows the regression parameters (with their
p-values) and MSE for polynomial models of degrees 1 to 6.

For the Black race, no model achieves statistical significance (p<0.05) for
all their parameters β. All models have equivalent mean squared error (MSE),
although models with degrees 4 to 6 having slightly lower MSE. With statistical
significance for all parameters β except the intercept, and the lowest MSE, the
model of degree 4 seems preferable. The non-significant intercept indicates that
the model is less accurate when risk scores are close to 0.

For the White race, MSE decreases as the model degree increases. It shows
that more complex polynomial models are more accurate. Only the models of
degree 4 and 6 achieve statistical significance for all parameters β. With degree
4, p-values are the lowest, and this is the preferred model. With degree 6, MSE
is lower by 4.15% but this may not justify to increase the model complexity.

These results indicate that modelling heteroscedasticity may require different
models for different populations, which is crucial for assessing fairness. The vary-
ing MSE and significance of parameters β across different polynomial degrees,
and across races, underscore the importance of tailoring models to specific de-
mographic groups. Thus, in practice, a one-size-fits-all approach to heteroscedas-
ticity modelling may not be appropriate for fairness assessments.

Figure 4 shows the distribution of signed residuals, the baseline model, and
the preferred models. Both races have outliers when risk scores are around the
maximum value (100), which slightly skews the models. For the Black race, we
observe a cone-shaped pattern of heteroscedasticity, where the range of residu-
als widens as risk scores increase. This pattern may be better modelled using
absolute or squared residuals, since it is symmetrical around the zero line. For
the White race, residuals are asymmetrical around the zero, showing a complex
pattern that may not be identifiable using absolute or squared residuals. Thus
modelling heteroscedasticity may require not only different model complexity
(e.g., polynomial of degree 4 or 6), but also different types of residuals measure-
ments (e.g., signed or absolute residuals).
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Table 2: Modelling of signed residuals for the Chronic Illness case for Black and
White races. Preferred model is in bold, parentheses show p-values.
degree β0 β1 β2 β3 β4 β5 β6 MSE

1 -1.3·10−1 2.4·10−3 6.7·10−2

(8.5·10−3) (8.5·10−3)
-1.1·10−1 2.7·10−3 1.8·10−1

(7.3·10−2) (7.3·10−2)

2 -2.0·10−2 -4.0·10−3 6.4·10−5 6.6·10−2

(2.6·10−1) (2.6·10−1) (6.7·10−2)
5.0·10−2 -6.6·10−3 9.1·10−5 1.8·10−1

(2.7·10−1) (2.7·10−1) (1.1·10−1)

3 -6.5·10−2 1.1·10−3 -6.3·10−5 8.3·10−7 6.6·10−2

(9.0·10−1) (9.0·10−1) (7.6·10−1) (5.4·10−1)
-1.5·10−2 9.9·10−4 -9.5·10−5 1.0·10−6 1.8·10−1

(9.5·10−1) (9.5·10−1) (7.8·10−1) (5.8·10−1)

4 4.6·10−1 -9.8·10−2 4.3·10−3 -6.6·10−5 3.3·10−7 4.1·10−2

(4.6·10−5) (1.3·10−9) (5.7·10−11) (1.6·10−11) (7.4·10−12)
3.6·10−1 -7.0·10−2 3.1·10−3 -4.7·10−5 2.4·10−7 1.7e−1

(9.8·10−2) (1.9·10−2) (1.1·10−2) (8.3·10−3) (6.4·10−3)

5 4.2·10−2 1.8·10−2 -3.6·10−3 1.4·10−4 -2.0·10−6 9.1·10−9 2.9·10−2

(7.1·10−1) (4.2·10−1) (8.6·10−3) (5.6·10−5) (4.5·10−7) (6.7·10−9)
3.0·10−1 -5.4·10−2 1.9·10−3 -1.8·10−5 -8.9·10−8 1.3·10−9 1.7·10−1

(2.6·10−1) (3.1·10−1) (5.5·10−1) (8.3·10−1) (9.2·10−1) (7.1·10−1)

6 3.6·10−1 -9.3·10−2 7.1·10−3 -2.8·10−4 5.7·10−6 -5.8·10−8 2.2·10−10 2.4·10−2

(8.0·10−3) (5.8·10−3) (1.3·10−2) (8.4·10−3) (2.5·10−3) (4.3·10−4) (5.4·10−5)
5.8·10−1 -1.6·10−1 1.2·10−2 -4.1·10−4 7.1·10−6 -6.1·10−8 2.1·10−10 1.7·10−1

(7.7·10−2) (7.1·10−2) (1.1·10−1) (1.3·10−1) (1.4·10−1) (1.4·10−1) (1.3·10−1)

(a) Degree 1 (b) Degree 4 (c) Degree 6

Fig. 4: Signed residuals vs risk score, for the Chronic Illness case.

Total Expenditure Case: Table 3 shows the regression parameters (with
their p-values) and MSE for polynomial models of degrees 1 to 6.

For both the Black and White races, MSE significantly decreases as the
polynomial degree increases. For the White race, polynomial degrees 1, 3 and 5
exhibit parameters β that are all statistically significant. The model with degree
5 has the lowest MSE (50% lower than than the baseline with degree 1). For
the Black race, the only model where all parameters β are statistically signifi-
cant is the baseline (degree 1). However, when disregarding the intercept, all the
parameters β of models with degrees 2, 3, 5, and 6 are statistically significant.
Since their MSEs are much lower than the baseline, polynomial models remain
preferable. This suggests that estimating the intercept, e.g., estimating residuals
for risk scores around 0, might be a recurrent issue with polynomial models.
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Table 3: Modelling of signed residuals for the Medical Expenditure case for Black
and White races. Preferred model is in bold, parentheses show p-values.
degree β0 β1 β2 β3 β4 β5 β6 MSE

1 -1.1·103 3.7·102 2.8·106
(9.1·10−4) (6.75·10−9)
-1.5·103 3.6·101
(3.4·10−2) (3.3·10−3) 1.2·107

2 2.8·102 -4.8·101 8.3·10−1 2.4·106
(5.5·10−1) (3.0·10−2) (1.2·10−4)
8.0·102 -9.8·101 1.3 1.1·107
(4.3·10−1) (3.4·10−2) (3.3·10−3)

3 -1.3·103 1.4·102 -3.7 3.0·10−2 2.1·106
(3.3·10−2) (9.2·10−3) (2.2·10−3) (1.8·10−4)
-2.0·103 2.2·102 -6.6 5.2·10−2 9.8·106
(1.3·10−1) (4.6·10−2) (1.1·10−2) (2.1·10−3)

4 6.4·102 -2.3·102 1.3·101 -2.2·10−1 1.2·10−3 1.8·106
(3.6·10−1) (1.7·10−2) (1.4·10−3) (2.0·10−4) (2.5·10−5)
1.0·103 -3.4·102 1.8·101 -3.3·10−1 1.9·10−3 9.1·106
(5.3·10−1) (1.2·10−1) (3.8·10−2) (1.2·10−2) (3.6·10−3)

5 -1.7·103 4.1·102 -3.1·101 9.2·10−2 -1.1·10−2 5.0·10−5 1.4·106
(3.5·10−2) (9.1·10−3) (1.2·10−3) (1.4·10−4) (1.7·10−5) (2.0·10−6)
-3.0·103 7.8·102 -5.8·101 1.7 -2.0·10−2 8.8·10−5 8.0·106
(1.1·10−1) (3.6·10−2) (1.1·10−2) (3.3·10−3) (1.1·10−3) (3.7·10−4)

6 7.2·102 -4.9·102 5.5·101 -2.5 5.1·10−2 -4.9·10−4 2.0·10−6 1.1·106
(3.9·10−1) (2.9·10−2) (4.1·10−3) (6.3·10−4) (9.2·10−5) (1.3·10−5) (2.0·10−6)
2.4·103 -1.3·103 1.4·102 -6.1 1.2·10−1 -1.2·10−3 4.0·10−6 6.5·106
(2.4·10−1) (2.0·10−2) (2.9·10−3) (5.2·10−4) (1.1·10−4) (2.4·10−5) (6.0·10−6)

(a) Degree 1 (b) Degree 5 (c) Degree 6

Fig. 5: Signed residuals vs risk score, for the Medical Expenditure case.

Figure 5 shows the distribution of signed residuals, the baseline model, and
the preferred models. For visual clarity, 3 outliers with high risk scores are re-
moved from these graphs1 but were not removed when fitting the polynomial
models. These outliers skew the models, especially the polynomial models.

For both races, we observe a cone-shaped pattern of heteroscedasticity, where
the range of residuals widens as risk scores increase. However, with high risk
scores, residuals tend to be negative for the Black race (i.e., risk scores are under-
estimated), and positive for the White race (i.e., risk scores are over-estimated).
Furthermore, for all risk scores, the range of residuals is larger for the Black

1 (1) Risk score = 99, residuals ≈ 1 400, race = Black. (2) Risk score = 100, residuals
≈ 1 700, race = White, (3) Risk score = 100, residuals ≈ 3 000, race = Black.
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race. These discrepancies create fairness issues. Such cone-shaped patterns of
heteroscedasticity might be better modelled using absolute residuals, which we
investigate next.

4.2 Absolute Residuals

Chronic Illness Case: Table 4 shows the regression parameters (with their
p-values) and MSE for polynomial models of degrees 1 to 6.

For the White race models with degree 2 and 6 both have all their coefficient
statistically significant. However, degree 6 has lower MSE (57.6% lower than
degree 2). For the Black race, only the model with degree 1 has all its parameters
β statistically significant. However, this model has the highest MSE. But other
models offer only a slightly lower MSE (e.g., 10% lower at most with degree 6).

Table 4: Modelling of absolute residuals for the Chronic Illness case for Black
and White races. Preferred model is in bold, parentheses show p-values.
degree β0 β1 β2 β3 β4 β5 β6 MSE

1 4.3·10−2 2.5·10−3 3.9·10−2

(2.8·10−1) (4.9·10−4)
1.6·10−1 3.4·10−3

(3.2·10−3) (2.8·10−4) 6.7·10−2

2 2.3·10−1 -8.3·10−3 1.1·10−4 3.3·10−2

(8.8·10−5) (1.4·10−3) (2.8·10−5)
2.7·10−1 -3.0·10−3 6.3·10−5 6.5·10−2

(9.8·10−4) (4.0·10−1) (6.9·10−2)

3 -5.7·10−2 2.4·10−2 -7.0·10−4 5.0·10−6 2.2·10−2

(3.6·10−1) (1.2e-5) (9.8·10−8) (1.2·10−9)
1.5·10−1 1.0·10−2 -2.7·10−4 2.0·10−6 6.4·10−2

(1.6·10−1) (2.5·10−1) (2.0·10−1) (1.1·10−1)

4 1.4·10−1 -1.3·10−2 9.6·10−4 -2.0·10−5 1.3·10−7 1.9·10−2

(5.4·10−2) (1.9·10−1) (1.7·10−2) (9.0·10−4) (3.2·10−5)
2.0·10−1 9.5·10−4 1.5·10−4 -4.2·10−6 3.1·10−8 6.5·10−2

(1.4·10−1) (9.6·10−1) (8.4·10−1) (7.0·10−1) (5.6·10−1)

5 -2.7·10−2 3.4·10−2 -2.2·10−3 6.3·10−5 -8.0·10−7 3.7·10−9 1.7·10−2

(7.6·10−1) (4.9·10−2) (3.2·10−2) (1.5·10−2) (4.8·10−3) (1.1·10−3)
6.5·10−2 3.8·10−2 -2.4·10−3 6.2·10−5 -7.1·10−7 2.9·10−9 6.4·10−2

(6.9·10−1) (2.4·10−1) (2.3·10−1) (2.1·10−1) (1.9·10−1) (1.7·10−1)

6 2.1·10−1 -5.5·10−2 6.3·10−3 -2.7·10−4 5.3·10−6 -5.0·10−8 1.8·10−10 1.4·10−2

(3.0·10−2) (3.2·10−2) (4.1·10−3) (9.3·10−4) (2.7·10−4) (8.7·10−5 ) (2.7·10−5)
3.7·10−1 -7.8·10−2 8.8·10−3 -3.7·10−4 7.4·10−6 -6.7·10−8 2.3·10−10 6.0·10−2

(5.7·10−2) (1.4·10−1) (4.8·10−2) (2.2·10−2) (1.3·10−2) (8.1·10−3) (5.6·10−3)

(a) Degree 1 (b) Degree 2 (c) Degree 6

Fig. 6: Absolute residuals vs risk score, for the Chronic Illness case.
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Figure 6 shows the distribution of signed residuals, the baseline model, and
the preferred models. There are outliers around the maximum risk score, which
skews the models. For the Black race, the absolute residuals have a wider range
that consistently exceed those of the White race, and increases with the risk
scores. In contrast, the White race shows less variability in the residuals.

Medical Expenditure case: Table 5 shows the regression parameters
(with their p-values) and MSE for polynomial models of degrees 1 to 6.

The parameters β for degrees 2, 4, and 6 are all statistically significant for
the White race, with degree 6’s MSE being considerably lower than degree 1’s
MSE (44.4% lower). For the Black race, only degree 2 has all its parameters
β statistically significant. For degree 6, only the intercept β0 is not statistically
significant. The MSE of degree 6 is much lower than the MSE of degree 2 (51.6%
lower), thus it is also a well-performing model.

Figure 7 shows the distribution of signed residuals, the baseline model, and
the preferred models. For the Black race, the spread of residuals is notably wider
than for the White race. For both races, residuals increase with the risk scores,
and this increase is more pronounced around the maximum risk scores. There
are outliers for high risk scores, which significantly skew the models, especially
for polynomial models, and for the Black race.

Table 5: Modelling of absolute residuals for the Medical Expenditure case for
Black and White races. Preferred model is in bold, parentheses show p-values.
degree| β0 β1 β2 β3 β4 β5 β6 MSE

1 -5.4·102 2.8·101 2.8·106
(1.2·10−1) (3.0·10−6)
-4.0·102 3.3·101 1.0·107
(5.4·10−1) (4.0·10−3)

2 1.1·103 -6.7·101 9.5·10−1 2.4·106
(2.2·10−2) (1.2·10−5) (2.3·10−3)
2.0·103 -1.1·102 1.4 9.3·106
(4.0·10−2) (1.6·10−2) (1.2·10−3)

3 -4.7·102 1.1·102 -3.5 2.9·10−2 2.1·106
(4.3·10−1) (3.3·10−3) (2.7·10−2) (1.9·10−4)
-1.4·103 2.8·102 -8.1 6.2·10−2 7.9·106
(2.5·10−1) (6.7·10−3) (6.9·10−4) (6.9·10−5)

4 1.5·103 -2.6·102 1.3·101 -2.3·10−1 1.3·10−3 1.7·106
(3.0·10−2) (7.4·10−4) (6.1·10−3) (1.1·10−4) (1.3·10−5)
2.5·103 -4.4·102 2.4·101 -4.3·10−1 2.4·10−3 6.7·106
(7.7·10−2) (1.9·10−2) (2.0·10−3) (2.1·10−4) (2.4·10−5)

5 -6.6·102 3.4·102 -2.8·101 8.5·10−1 -1.1·10−2 4.7·10−5 1.4·106
(3.9·10−1) (2.9·10−3) (2.6·10−2) (3.3·10−4) (4.2·10−5) (5.0·10−6)
-1.6·103 6.9·102 -5.4·101 1.6 -2.0·10−2 8.9·10−5 5.5·106
(2.9·10−1) (2.6·10−2) (4.6·10−3) (7.7·10−4) (1.2·10−4) (1.8·10−5)

6 1.9·103 -6.1·102 6.3·101 -2.7 5.5·10−2 -5.3·10−4 2.0·10−6 1.0·106
(2.5·10−2) (6.3·10−3) (8.9·10−4) (1.2·10−4) (1.7·10−5) (2.3·10−6) (3.2·10−7)
2.8·103 -1.0·103 1.1·102 -4.8 9.7·10−2 -9.3·10−4 3.2·10−6 4.5·106
(9.5·10−2) (2.9·10−2) (5.2·10−3) (1.0·10−3) (2.1·10−4) (4.0·10−5) (8.0·10−6)
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(a) Degree 1 (b) Degree 4 (c) Degree 6

Fig. 7: Absolute residuals vs risk score, for the Medical Expenditure case.

4.3 Preferred Model

Table 6 recaps the evaluation of the preferred models for all use cases. We can
observe that the models’ performance is worse for the Black race compared to
the White race, except for the Chronic Illness case with signed residuals. Thus
modelling the residuals is generally more uncertain for the Black race.

Table 6: Preferred models for each use case and Black and White races.
Degree MSE Deviance ∆D pβ < 0.05

Chronic Illness Signed Residuals 4 4.1·10−2 -4.2·101 -5.4·101 Yes
4 1.7·10−1 9.9·101 -1.1·101 All but β0

Absolute Residuals 6 1.4·10−2 -1.5·102 -1.1·102 Yes
1 6.7·10−2 1.1·101 0 Yes

Total Expenditure Signed Residuals 5 1.4·106 1.7·103 -7.3·101 Yes
6 6.5·106 1.8·103 -6.4·101 All but β0

Absolute Residuals 4 1.7·106 1.7·103 -5.5·101 Yes
2 9.3·106 1.9·103 -1.1·101 Yes

Signed vs absolute residuals: For the Chronic Illness case, with the Black
race, the linear model using absolute residuals is statistically more reliable than
the one using signed residuals (deviance, p-values of β parameters). However, its
MSE is much higher. This is consistent with our assumption that the Back race’s
cone-shaped pattern of heteroscedasticity, horizontally centered around the zero
line (Fig. 4), can be modelled with simple linear models and absolute residuals.

For the Medical Expenditure case, cone-shaped pattern of heteroscedastic-
ity were also observed (Fig. 5). For these, the preferred models using absolute
residuals are less complex than those using signed residuals (e.g., degree 2 vs 6
for the Black race). The deviance is similar with signed or absolute residuals,
but MSE is lower with signed residuals. These cone-shaped patterns were not
well-centered around the horizontal zero line, which explains why using signed
residuals is preferable.
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We conclude that using signed residuals is preferable to absolute residuals
if the pattern of heteroscedasticity is not symmetrical around the horizontal
zero line. However, with signed residuals the intercept parameter β0 might be
less reliable (e.g., not statistically significant), e.g., impeding the modelling of
residuals and heteroscedasticity for risk scores around zero.

Linear vs polynomial models: A simple linear model is preferable only
for one case out of eight. For the remaining cases, compared to simple linear
models, MSE is significantly lower with polynomial models, and the reduction of
deviance ∆D is noticeable (especially for the White race). The MSE consistently
decreased as model complexity increased from degree 1 to 6. We conclude that
using polynomial regression enhances the ability to capture the distribution of
residuals and the heteroscedasticity.

4.4 Discussion

What is the advantage of polynomial regression in complex cases of
heteroscedasticity? Polynomial models offers an important advantage over
simple linear models in capturing curvature within residuals. This curvature
allows for more flexibility when modelling heteroscedasticity where the distribu-
tion of residuals is not linear or constant, an ability that simple linear regression,
limited to straight lines, does not have. Our finding shows that relying solely on
simple linear regression for modelling heteroscedasticity may be insufficient. This
approach requires to tune the model complexity (i.e., the polynomial degrees).
Beware that even if non-significant parameters are found for a given degree, and
significant parameters may yet be found for a higher degree higher (e.g., Ta-
ble 4). However, the model complexity may not be increased indefinitely as this
may lead to overfitting.

We do not claim that polynomial models are the best approach to modelling
heteroscedasticity, and other forms parametric regressions must be investigated
in future work. Non-parametric models may also be more accurate for mod-
elling residuals [15, 9]. However, parametric models offer interpretable means for
identifying heteroscedasticity, i.e., through interpreting their parameters.

How to interpret polynomial models to determine fairness issues
due to heteroscedasticity? Heteroscedasticity can be identified when at least
one parameters β1, ..., βn is non-zero and statistically significant, wether the
model uses absolute or signed residuals.

For social groups defined by a categorical sensitive feature (e.g., race or gen-
der), a polynomial model must be fitted to each social group2. If all social groups
are impacted by heteroscedasticity, it remains challenging the assess whether one
group is more impacted than the other. To address this issue, the β parameters
could be compared, e.g., fairness issues arise if βn is higher for a protected group
compared to another group. However, this approach is difficult to apply if the
heteroscedasticity models have different complexity for each group, or if param-
eters βn are not significant for each groups.
2 Note that fairness issues also arise if parameter β0 is different for each social group.
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For social groups defined by a numeric sensitive feature (e.g., age or in-
come), a single polynomial model can be fitted using the sensitive feature as x
in equations (3-4). Once heteroscedasticity is identified, it remains challenging
to identify for which range of the sensitive feature is heteroscedasticity present,
or of higher magnitude.

Hence approaches to explore in future work include (1) studying the differ-
ence between residuals models for each groups, and (2) identifying the range of
values x for which residuals is higher, and the magnitude of this heteroscedastic
increase in residuals (e.g., fairness issues arise if within the same range of x val-
ues, residuals are higher for a specific social group), and (3) multivariate models
that account for feature interactions, and intersectionality [17].

What is the difference in effectiveness between using signed resid-
uals and absolute residuals for detecting heteroscedasticity? This is
complex to determine, and the impact of outliers may be different.

Using absolute residuals can reduce the cumulative prediction errors of poly-
nomial models, and give a more accurate indication of heteroscedasticity (e.g.,
with lower MSEs and β parameters’ p-values). This especially applies to patterns
of heteroscedasticity that are symmetrical around the horizontal zero line, e.g.,
when using signed residuals.

However, the models using signed residuals performed systematically better
in Medical Expenditure case, and offered much lower MSE for the Black race
in the Chronic Illness case. Signed residuals preserve information about to over-
or under-estimation. The identification of systematic biases in AI models can
depend on this information. Signed residuals also offer crucial information to
assess the practical impacts of heteroscedasticity, as over- or under-estimations
can have opposite consequences.

5 Conclusion

This study highlights the advantages and limitations of polynomial regression
models in detecting and modelling heteroscedasticity, compared to simple linear
methods. We demonstrate the polynomial model’s ability to capture patterns
with curvature. This is a distinct advantage compared to linear models which
are limited to straight lines. This study also underscores the importance of using
multiple evaluation methods, such as β parameters’ p-values, deviance, mean
squared error (MSE), and data visualization, to support model selection. This
study also underlines the importance of considering diverse modelling approaches
tailored to each protected group, as there is no one-size-fits-all approach. While
the advantages of polynomial regression are demonstrated, challenges remain
with comparing the magnitude of heteroscedasticity across social groups. Hence
future work must explore approaches to compare heteroscedasticity across social
group, e.g., with parametric and non-parametric approaches.
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